Chiral polytopes whose smallest regular cover is a polytope

Gabe Cunningham Wentworth Institute of Technology Boston, Massachusetts, USA, 02115

August 28, 2023

Abstract

We give a criterion for when the smallest regular cover of a chiral polytope \mathcal{P} is itself a polytope, using only information about the facets and vertex-figures of \mathcal{P} .

Key Words: Chiral polytope, abstract polytope, regular cover

AMS Subject Classification (2020): Primary: 52B15. Secondary: 20B25, 05E18

1 Introduction

Abstract polytopes are combinatorial objects that generalize convex polytopes. Every finite abstract 3-polytope can be identified with a face-to-face tiling of a closed surface, though some such tilings do not yield abstract 3-polytopes. More generally, an abstract n-polytope can be thought of as a collection of abstract (n-1)-polytopes glued together in a 'nice' way that ensures that the resulting structure still resembles the incidence relation of a convex polytope.

The study of symmetry is central in the theory of abstract polytopes. The most symmetric polytopes are called *regular*, and there is a well-developed theory of regular polytopes; see [9] for an extensive overview. Polytopes that have full symmetry under abstract rotations but no symmetry by an abstract reflection are called *chiral*. Chiral polytopes have also been the subject of much study, but they have proven much more difficult to pin down than regular polytopes. Chiral polytopes were introduced in [14], building on earlier work of Coxeter and others on chiral maps and honeycombs. Since then, many papers have investigated the structure of chiral polytopes; see [1, 2, 5, 13] for a broad selection.

Every chiral polytope has a unique smallest regular polytope-like object that covers it. Our goal is to determine when the smallest regular cover of a chiral polytope is itself a polytope. (This is essentially Problem 3 in [13].) A partial answer is given in [11, Cor. 7.5], covering the case where the facets or vertex-figures are regular. Here we will give an

answer for the case where the facets and vertex-figures are both chiral. Furthermore, our characterization only uses information about the facets and vertex-figures; we do not need to know any of the global structure of the chiral polytope in question.

2 Background

2.1 Polytopes

The basic notions of abstract polytopes can be found in [9] and chiral polytopes are described in [14]. Here we review the necessary background.

Suppose \mathcal{P} is a partially-ordered set with a unique minimal element F_{-1} and a unique maximal element F_n . If the maximal chains of \mathcal{P} all have the same length, then \mathcal{P} is a graded poset, where each element has a rank equal to 1 more than the maximum rank of all elements it covers. In our treatment, we give the minimal element a rank of -1. If \mathcal{P} also satisfies the two conditions below, it is an (abstract) n-polytope:

- (a) (Diamond condition): Whenever F < G and rank(G) rank(F) = 2, there are exactly two elements H such that F < H < G.
- (b) (Strong connectivity): Suppose F < G and $\operatorname{rank}(G) \operatorname{rank}(F) \ge 3$. Then the poset interval $(F, G) := \{H : F < H < G\}$ has a connected Hasse diagram.

From now on, we will understand 'polytope' to mean 'abstract polytope'.

Each element F of rank n-1 in an n-polytope induces an (n-1)-polytope; namely, the poset $[F_{-1}, F] := \{H : F_{-1} \le H \le F\}$. We refer to this as a facet of \mathcal{P} . (In some contexts, 'facet' can also refer to the element F itself, but at present we will not need to refer to those elements separately.) Similarly, if v is an element of rank 0, then the vertex-figure at v is the poset $[v, F_n]$, which is also an (n-1)-polytope. Finally, a medial section of \mathcal{P} is a facet of a vertex-figure of \mathcal{P} (or indeed, a vertex-figure of a facet). Note that in the literature on polytopes, the interval [F, G] is usually written G/F and called a section of the polytope.

The maximal chains of a polytope are referred to as *flags*. If two flags differ only in their face of rank i, then we say that the flags are i-adjacent, or simply adjacent. For every $i \in \{0, \ldots, n-1\}$, each flag has a unique i-adjacent flag.

If \mathcal{P} and \mathcal{Q} are polytopes of the same rank, we say that \mathcal{P} covers \mathcal{Q} if there is a function $\pi: \mathcal{P} \to \mathcal{Q}$ that preserves the partial order, the rank of each face, and such that whenever two flags of \mathcal{P} are *i*-adjacent, so are their images under π . Note that, though we do not require surjectivity in the definition, it is in fact automatic from the conditions we require.

An automorphism of \mathcal{P} is a bijection from \mathcal{P} to itself that preserves rank and the partial order. We denote the automorphism group of \mathcal{P} by $\Gamma(\mathcal{P})$. There is a natural action of $\Gamma(\mathcal{P})$ on the flags of \mathcal{P} , and if this action is transitive, then \mathcal{P} is called *regular*. In this case, the automorphism group of \mathcal{P} is a quotient of the string Coxeter group

$$W_n = \langle r_0, \dots, r_{n-1} \mid r_i^2 = 1 \text{ for all } i, (r_i r_j)^2 = 1 \text{ for all } |i - j| > 1 \rangle.$$

Furthermore, we can reconstruct a regular polytope \mathcal{P} from the epimorphism $\pi: W_n \to \Gamma(\mathcal{P})$ as a coset geometry. For $i \in \{0, \ldots, n-1\}$, let $\rho_i = \pi(r_i)$. Then we define the *i*-faces to be cosets of

$$G_i := \langle \rho_i \mid j \neq i \rangle$$

and where we define the partial order by $G_i \alpha \leq G_j \beta$ if and only if $i \leq j$ and $G_i \alpha \cap G_j \beta \neq \emptyset$. A regular polytope is called *orientable* (or *directly regular*) if every relator in $\Gamma(\mathcal{P})$ has even length in the generators r_i . In this case, the *rotation subgroup* of the automorphism group, which consists of the words of even length in $\Gamma(\mathcal{P})$, is a subgroup of index 2 in $\Gamma(\mathcal{P})$. We denote this group by $\Gamma^+(\mathcal{P})$.

A polytope \mathcal{P} is *chiral* if the action of $\Gamma(\mathcal{P})$ on the flags of \mathcal{P} has two orbits such that adjacent flags always lie in different orbits. The facets of a chiral polytope are all isomorphic to some polytope \mathcal{K} that is either chiral or directly regular, and the same is true of the vertex-figures. The facets of the facets (and vertex-figures of the vertex-figures) must be directly regular (see [14, Prop. 9]). When working with chiral polytopes, we assume that we have chosen a *base flag*; the form of the automorphism group for a chiral polytope depends on the choice of base flag.

2.2 String C^+ -groups

For each $n \geq 1$, let

$$W_n^+ = \langle s_1, \dots, s_{n-1} \mid (s_i \cdots s_j)^2 = 1 \text{ for all } i < j \rangle.$$

Consider a group $\Gamma = W_n^+/M = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$, where each σ_i is the image of s_i under the natural projection. We define:

$$\Gamma_0 = \langle \sigma_2, \dots, \sigma_{n-1} \rangle$$

$$\Gamma_{n-1} = \langle \sigma_1, \dots, \sigma_{n-2} \rangle$$

$$\Gamma_{0,n-1} = \langle \sigma_2, \dots, \sigma_{n-2} \rangle.$$

The group Γ is called a *string* C^+ -group if it satisfies a certain *intersection condition* (see [14, Prop. 7]), but the following recursive definition is equivalent (see for example [4, Proposition 3.13]).

Definition 2.1. $\Gamma = W_n^+/M$ is a string C^+ -group if:

- n = 1 and $|\Gamma| > 1$, or
- Γ_0 and Γ_{n-1} are both string C^+ -groups and $\Gamma_0 \cap \Gamma_{n-1} = \Gamma_{0,n-1}$.

The group W_n^+ has an outer automorphism that sends each s_i to $\overline{s_i}$ defined by:

$$\overline{s_1} = s_1^{-1}$$

$$\overline{s_2} = s_1^2 s_2$$

$$\overline{s_i} = s_i \text{ for } i > 2.$$

Indeed, we can identify W_n^+ with the even-word subgroup of W_n by identifying each s_i with $r_{i-1}r_i$, and the outer automorphism of W_n^+ is just conjugation by r_0 in W_n . Given a quotient $\Gamma = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ of W_n^+ , we define

$$\overline{\Gamma} = \langle \overline{\sigma_1}, \dots, \overline{\sigma_{n-1}} \rangle,$$

where $\overline{\sigma_i}$ is the image of $\overline{s_i}$. Similarly, if $M \leq W_n^+$, then we define

$$\overline{M} = \{ \overline{g} \mid g \in M \}.$$

The automorphism group of a chiral polytope is a string C^+ -group. Similarly, the rotation subgroup of a directly regular polytope is a string C^+ -group. Furthermore, we can build a polytope from a string C^+ -group, and the result is either chiral or directly regular. In fact, if Γ is a string C^+ -group, then it is the automorphism group of a chiral polytope if and only if there is no automorphism of Γ mapping each σ_i to $\overline{\sigma_i}$ (see [14, Thm. 1(c)]).

More generally, if Γ is a quotient of W_n^+ but not a string C^+ -group, then we may nevertheless build something from it that will be somewhat like a polytope, such that the notions of regularity and chirality still make sense.

2.3 Smallest regular covers and mixing

If $G = \langle g_1, \dots, g_n \rangle$ and $H = \langle h_1, \dots, h_n \rangle$, then their mix is defined as

$$G \diamond H = \langle (g_1, h_1), \dots, (g_n, h_n) \rangle \leq G \times H.$$

If \mathcal{P} and \mathcal{Q} are directly regular n-polytopes, then we define $\mathcal{P} \diamond \mathcal{Q}$ to be the poset obtained as an appropriate coset geometry of $\Gamma^+(\mathcal{P}) \diamond \Gamma^+(\mathcal{Q})$. If $\Gamma^+(\mathcal{P}) \diamond \Gamma^+(\mathcal{Q})$ is a string C^+ -group, then $\mathcal{P} \diamond \mathcal{Q}$ is a directly regular n-polytope, and is indeed the unique minimal regular n-polytope that covers both \mathcal{P} and \mathcal{Q} . See [3] for more details.

Every chiral polytope has a unique smallest regular cover, which may or may not be a polytope (see [12, Prop. 4.1] and the remark before it.) If \mathcal{P} is a chiral polytope with automorphism group Γ , then the rotation subgroup of its smallest regular cover \mathcal{R} is $\Lambda = \Gamma \diamond \overline{\Gamma}$. Then \mathcal{R} will be a polytope if and only if Λ is a string C^+ -group.

Our goal is to characterize those chiral polytopes \mathcal{P} whose smallest regular cover is a polytope. We recall the following:

Proposition 2.2. ([11, Cor. 7.5]) If \mathcal{P} is a chiral polytope with regular facets or vertex-figures, then its smallest regular cover is a polytope.

Thus, it suffices to concentrate on the case where \mathcal{P} has chiral facets and vertex-figures. We start with the following simple observation:

Proposition 2.3. Let \mathcal{P} be a chiral polytope with chiral facets and vertex-figures, with automorphism group Γ , and let $\Lambda = \Gamma \diamond \overline{\Gamma}$. Then the smallest regular cover of \mathcal{P} is a polytope if and only if $\Lambda_0 \cap \Lambda_{n-1} \leq \Lambda_{0,n-1}$.

Proof. Since the facets of the facets of a chiral polytope are regular, the facets of \mathcal{P} are chiral polytopes with regular facets. Thus, by Proposition 2.2, their smallest regular cover is a polytope. The automorphism group of this smallest regular cover is $\Gamma_{n-1} \diamond \overline{\Gamma_{n-1}}$, and so it is a string C^+ -group. In fact, this just says that Λ_{n-1} is a string C^+ -group. A dual argument shows that Λ_0 is a string C^+ -group. Then it follows that Λ is a string C^+ -group if and only if $\Lambda_0 \cap \Lambda_{n-1} = \Lambda_{0,n-1}$, and the inclusion $\Lambda_{0,n-1} \leq \Lambda_0 \cap \Lambda_{n-1}$ is obvious.

Finally, let us recall the notion of the chirality group of a polytope, as defined in [1]. If \mathcal{P} is a chiral polytope with automorphism group Γ (relative to a chosen base flag), then Γ is naturally isomorphic to W_n^+/M for some normal subgroup M of W_n^+ . Then the *chirality group* of \mathcal{P} , denoted $X(\mathcal{P})$, is the kernel of the natural projection $\pi: W_n^+/M \to W_n^+/M\overline{M}$.

Proposition 2.4. Let \mathcal{P} be a chiral polytope with automorphism group Γ , and let $\Lambda = \Gamma \diamond \overline{\Gamma}$. Then

$$X(\mathcal{P}) = \{ \gamma \in \Gamma \mid (\gamma, 1) \in \Lambda \}.$$

Proof. Note that $(\gamma, 1) \in \Lambda$ if and only if there is some $g = s_{i_1} \cdots s_{i_k} \in W_n^+$ such that g projects to γ in W_n^+/M and g projects to 1 in W_n^+/\overline{M} . In other words, $g \in \overline{M}$ and thus $g \in M\overline{M}$. Thus, projecting g to γ in W_n^+/M and then projecting γ to $W_n^+/M\overline{M}$ must yield 1, and so $(\gamma, 1) \in \Lambda$ if and only if $\gamma \in X(\mathcal{P})$.

Note that if \mathcal{P} has facets isomorphic to \mathcal{K} , then $X(\mathcal{K})$ naturally embeds into $X(\mathcal{P})$ as:

$$X(\mathcal{K}) = \{ \gamma \in \Gamma_{n-1} \mid (\gamma, 1) \in \Lambda_{n-1} \}.$$

Similarly, if the vertex-figures are isomorphic to \mathcal{L} , then

$$X(\mathcal{L}) = \{ \gamma \in \Gamma_0 \mid (\gamma, 1) \in \Lambda_0 \}.$$

Finally, if the medial sections are isomorphic to \mathcal{M} , then

$$X(\mathcal{M}) = \{ \gamma \in \Gamma_{0,n-1} \mid (\gamma, 1) \in \Lambda_{0,n-1} \}.$$

3 Main result

We are now ready for the main result.

Theorem 3.1. Let \mathcal{P} be a chiral polytope with facets isomorphic to \mathcal{K} , vertex-figures isomorphic to \mathcal{L} , and medial sections isomorphic to \mathcal{M} . Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K}) \cap X(\mathcal{L}) \leq X(\mathcal{M})$.

Proof. First, note that

$$X(\mathcal{K}) \cap X(\mathcal{L}) = \{ \gamma \in \Gamma_{n-1} \mid (\gamma, 1) \in \Lambda_{n-1} \} \cap \{ \gamma \in \Gamma_0 \mid (\gamma, 1) \in \Lambda_0 \}$$
$$= \{ \gamma \in \Gamma_0 \cap \Gamma_{n-1} \mid (\gamma, 1) \in \Lambda_0 \cap \Lambda_{n-1} \}$$
$$= \{ \gamma \in \Gamma_{0,n-1} \mid (\gamma, 1) \in \Lambda_0 \cap \Lambda_{n-1} \},$$

where the last equality follows since Γ is a string C^+ -group. Recall that

$$X(\mathcal{M}) = \{ \gamma \in \Gamma_{0,n-1} \mid (\gamma, 1) \in \Lambda_{0,n-1} \}.$$

Thus, if $\Lambda_0 \cap \Lambda_{n-1} \leq \Lambda_{0,n-1}$, then $X(\mathcal{K}) \cap X(\mathcal{L}) \leq X(\mathcal{M})$. In light of Proposition 2.3, it remains to prove the converse.

Suppose that $(\gamma, \beta) \in \Lambda_0 \cap \Lambda_{n-1}$. In particular, $\beta \in \overline{\Gamma}_0 \cap \overline{\Gamma}_{n-1}$, and since $\overline{\Gamma}$ is a string C^+ -group, it follows that $\beta \in \overline{\Gamma}_{0,n-1}$. Then there is an element α of $\Lambda_{0,n-1}$ such that $(\gamma, \beta)\alpha = (\gamma', 1)$ for some γ' . Furthermore, $(\gamma', 1) \in \Lambda_0 \cap \Lambda_{n-1}$, from which it follows that $\gamma' \in \Gamma_{0,n-1}$. Thus $(\gamma', 1) \in X(\mathcal{K}) \cap X(\mathcal{L})$ which, by assumption, is contained in $X(\mathcal{M})$. So $(\gamma', 1) \in \Lambda_{0,n-1}$, and since $\alpha \in \Lambda_{0,n-1}$, so is $(\gamma', 1)\alpha^{-1} = (\gamma, \beta)$, completing the proof. \square

The beauty of Theorem 3.1 is that it does not depend on \mathcal{P} per se – merely on the type of its facets and vertex-figures. Let us consider several examples and corollaries.

Remark 3.2. Note that Theorem 3.1 does not require that the facets and vertex-figures of \mathcal{P} both be chiral. If, for example, the facets \mathcal{K} are regular, then $X(\mathcal{K})$ is trivial, and so the condition of the theorem is trivially satisfied, agreeing with Proposition 2.2.

Corollary 3.3. Suppose \mathcal{P} is a chiral polytope with automorphism group Γ , facets isomorphic to \mathcal{K} , and vertex-figures isomorphic to \mathcal{L} . If the medial sections of \mathcal{P} are regular, then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K}) \cap X(\mathcal{L})$ (viewed as subgroups of Γ) has trivial intersection with $\Gamma_{0,n-1}$.

Corollary 3.4. If \mathcal{P} is a chiral 4-polytope with automorphism group Γ , facets isomorphic to \mathcal{K} , and vertex-figures isomorphic to \mathcal{L} , then the smallest regular cover of \mathcal{P} is a polytope if and only if no power of σ_2 is contained in $X(\mathcal{K}) \cap X(\mathcal{L})$.

Example 3.5. The five families of chiral 4-polytopes with chiral facets (and vertex-figures) in [7, Table 4] have a power of σ_2 in $X(\mathcal{K}) \cap X(\mathcal{L})$ (see [7, Prop. 11]), and so the smallest regular cover of each one is not a polytope.

A chiral polytope \mathcal{P} is called *totally chiral* if $X(\mathcal{P}) = \Gamma$ (see [1]). The following result is immediate.

Proposition 3.6. If \mathcal{P} has totally chiral facets and vertex-figures, then its smallest regular cover is a polytope if and only if it has totally chiral medial sections.

Finally, we note that Theorem 3.1 guarantees that certain choices of facets for a chiral polytope will guarantee that the smallest regular cover is a polytope.

Corollary 3.7. Suppose that K is a chiral polytope with automorphism group Γ . If X(K) has trivial intersection with Γ_0 , then the smallest regular cover of every chiral polytope with facets isomorphic to K is a polytope.

Example 3.8. The chiral polyhedra $\{4,4\}_{(b,c)}$ with $bc(b-c) \neq 0$ all have chirality groups that trivially intersect $\langle \sigma_2 \rangle$. (Indeed, all such polyhedra cover the regular map $\{4,4\}_{(1,0)}$, and so no power of σ_2 can be present in the chirality group.) Thus, all chiral polytopes with such facets have a smallest regular cover that is a polytope.

4 Minimal regular covers

A regular polytope \mathcal{R} is said to be a minimal regular cover of the polytope \mathcal{P} if the only regular cover of \mathcal{P} that is covered by \mathcal{R} is \mathcal{R} itself. Whenever the smallest regular cover of \mathcal{P} is a polytope, then this is the unique minimal regular cover of \mathcal{P} [11, Prop. 3.16]. Otherwise, a polytope may have multiple minimal regular covers; for example, see the Tomotope [10]. Indeed, it seems likely that every polytope whose smallest regular cover is not a polytope has multiple minimal regular covers. Problem 4 in [13] asks for a characterization of chiral polytopes with a unique minimal regular cover.

Let us look at an example inspired by Example 3.5. Consider the chiral polytope \mathcal{P} whose automorphism group is

$$\Gamma = \langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^6 = \sigma_2^9 = \sigma_3^6 = 1, (\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_3)^2 = (\sigma_1 \sigma_2 \sigma_3)^2 = 1, \sigma_2 \sigma_1^2 = \sigma_1^2 \sigma_2^4, \sigma_3^2 \sigma_2 = \sigma_2^4 \sigma_3^2 \rangle.$$

This is a polytope with 648 flags, and its smallest regular cover \mathcal{R} , with 1944 flags, is not a polytope. Clearly, any regular polytope \mathcal{Q} that covers \mathcal{R} such that $|\mathcal{Q}|/|\mathcal{R}|$ is a prime number will be a minimal regular cover of \mathcal{P} .

Now, let K be a facet of R, and let T be its *trivial extension*, which has rotation subgroup

$$\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^6 = \sigma_2^9 = \sigma_3^2 = 1, (\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_3)^2 = (\sigma_1 \sigma_2 \sigma_3)^2 = 1, (\sigma_1 \sigma_2^{-2})^2 = \sigma_1 \sigma_2^2 \sigma_1 (\sigma_1 \sigma_2^{-1} \sigma_1)^2 = 1 \rangle.$$

Let $Q = \mathcal{R} \diamond \mathcal{T}$. Using the GAP package RAMP [6, 8], we confirmed that Q is a regular polytope with 5832 flags, making it a 3-fold cover of \mathcal{R} and thus a minimal regular cover of \mathcal{P} . Similarly, if we mix \mathcal{R} with the dual of \mathcal{T} , which has group

$$\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^2 = \sigma_2^9 = \sigma_3^6 = 1, (\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_3)^2 = (\sigma_1 \sigma_2 \sigma_3)^2 = 1, (\sigma_3^{-1} \sigma_2^2)^2 = \sigma_2 \sigma_3^2 \sigma_2 (\sigma_3^{-1} \sigma_2 \sigma_3^{-1})^2 = 1 \rangle,$$

then we obtain another 3-fold cover of \mathcal{R} , and these two covers are non-isomorphic. So \mathcal{P} does not have a unique minimal regular cover. We conjecture that the situation is similar with all of the chiral polytopes mentioned in Example 3.5.

5 Acknowledgements

The author would like to thank the anonymous referees for their suggested improvements, and Daniel Pellicer for pointing out an error in a previous version of Corollary 3.3.

References

- [1] Antonio Breda D'Azevedo, Gareth Jones, and Egon Schulte, Constructions of chiral polytopes of small rank, Canad. J. Math. **63** (2011), no. 6, 1254–1283.
- [2] Marston DE Conder and Wei-Juan Zhang, Abelian covers of chiral polytopes, Journal of Algebra 478 (2017), 437–457.

- [3] Gabe Cunningham, Mixing chiral polytopes, J. Algebraic Combin. $\bf 36$ (2012), no. 2, 263–277. MR 2946468
- [4] _____, Mixing regular convex polytopes, Discrete Math. **312** (2012), no. 4, 763–771. MR 2872918
- [5] _____, Non-flat regular polytopes and restrictions on chiral polytopes, The Electronic Journal of Combinatorics 24 (2017), no. 3, #P3.59.
- [6] Gabe Cunningham, Mark Mixer, and Gordon Williams, RAMP, the research assistant for maniplexes and polytopes, Version 0.7, https://github.com/SupposeNot/RAMP, GAP package.
- [7] Gabe Cunningham and Daniel Pellicer, *Tight chiral polytopes*, J. Algebraic Combin. **54** (2021), no. 3, 837–878. MR 4330415
- [8] GAP Groups, Algorithms, and Programming, Version 4.11.0, https://www.gap-system.org, Feb 2020.
- [9] Peter McMullen and Egon Schulte, *Abstract regular polytopes*, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, Cambridge, 2002. MR 1965665 (2004a:52020)
- [10] Barry Monson, Daniel Pellicer, and Gordon Williams, *The tomotope*, Ars Mathematica Contemporanea **5** (2012), no. 2, 355–370.
- [11] _____, Mixing and monodromy of abstract polytopes, Transactions of the American Mathematical Society **366** (2014), no. 5, 2651–2681.
- [12] Daniel Pellicer, A construction of higher rank chiral polytopes, Discrete Math. **310** (2010), no. 6-7, 1222–1237. MR 2579855 (2011b:52012)
- [13] _____, Developments and open problems on chiral polytopes, Ars Mathematica Contemporanea 5 (2012), no. 2, 333–354.
- [14] Egon Schulte and Asia Ivić Weiss, *Chiral polytopes*, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 493–516. MR 1116373 (92f:51018)