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1 Introduction

The study of symmetries of polyhedra has a long history. Already the Greeks knew about all
Platonic and Archimedean solids that in current terminology are the only vertex-transitive
convex polyhedra whose faces are all regular, other than the prisms and antiprisms. With-
out stating proper definitions, the Greeks understood convexity as a defining condition for
polyhedra.

Centuries later, a deeper understanding of the properties of symmetry of polyhedra led
to modifications of the notion of ‘polyhedron’. First the two stellated dodecahedra and then
the great dodecahedron and great icosahedron were recognized as regular polyhedra (see [5]).
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The twentieth century brought formal definitions and interactions among distinct areas
or mathematics. This is the time of the appearance of the Petrie-Coxeter polyhedra (see [4]),
and decades later of Grünbaum’s definition of what are known today as skeletal polyhedra
(see [13]). Here regularity is formally defined in terms of a group action.

Most of the study of symmetries of skeletal polyhedra has focused on the regular ones.
Their full classification was given in the twentieth century in [10] and [11]. Later generaliza-
tions to higher dimensions and other geometries were studied (see for example [1], [2], [16],
[19]).

Fewer studies have been performed on highly symmetric non-regular polyhedra that are
not convex. They include the enumeration of the starry uniform polyhedra with planar faces
[6], the classification of chiral polyhedra [24, 25] and the polyhedra obtained by Wythoffian
operations from regular ones [26, 28].

One of the natural ways to proceed when studying non-regular polyhedra is to enumerate
them according to the number of flag orbits (regular polyhedra have only one orbit). The
enumeration of the finite 2-orbit polyhedra was announced [15]. That of the infinite 2-
orbit polyhedra is ongoing [21] and is a logical follow-up to the classification of the chiral
polyhedra.

In [9] the authors enumerate the finite 3-orbit polyhedra with reducible symmetry group.
In this paper we complete the enumeration of finite 3-orbit polyhedra by studying those with
irreducible symmetry group.

The paper is organized as follows. Section 2 is about basic concepts and results on skeletal
polyhedra. The 7 finite irreducible groups of isometries of E3 and some of their properties
are explained in Section 3. The approach we will follow towards the enumeration of the
polyhedra is explained in Section 4, including general theory of those polyhedra that admit
a continuous movement that preserves the symmetry group and the combinatorics of the
polyhedra, without being homothety or orientation preserving isometries. The enumeration
is carried out in Sections 5, 6, 7, 8, 9; each section deals with one symmetry group. We
conclude with final remarks in Section 10, and information about the polyhedra is collected
in tables in an appendix at the end of the paper.

2 Polygons and polyhedra

Here we recall the main ideas and basic results on polygons, polyhedra and 3-orbit polyhedra.
More details can be found in [9].

A skeletal polygon is an embedding of a finite, connected 2-regular graph in Euclidean
space E3 that is one-to-one on the vertex set. The images of the edges are line segments,
and distinct edges are required to correspond to distinct segments. As a consequence of this,
no polygon can have fewer than 3 edges. If two edges have no vertex in common then they
may intersect in an interior point. Polygons need not be convex nor planar. Even though in
general polygons are allowed to be infinite, here we will only consider finite ones. Henceforth,
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we assume that every polygon is an embedding of a cycle in E3.

A symmetry of a polygon Q is an isometry of E3 preserving Q setwise. If Q has n vertices
and its symmetry group has 2n elements acting on the vertex set as the standard actions
of the 2n elements of the dihedral group Dn, we say that Q is a regular polygon. Regular
polygons can be planar or skew. Planar regular polygons may be convex or star-shaped,
whereas skew polygons are obtained from planar polygons by blending them with a line
segment in the sense of [18, Chapter 5A]. For more details on regular polygons see [13].

For a given collection X of skeletal polygons and a given vertex v of some polygon in
X , the vertex-figure at v is a graph whose vertices are the neighbors of v, two of which are
joined by a line segment if and only if they are the neighbors of v in some polygon in X .

A skeletal polyhedron P is a collection of polygons (also called faces) satisfying the fol-
lowing properties:

• Every compact subset of E3 contains finitely many vertices of (the faces of) P .

• The graph induced by the vertices and edges of all polygons is connected.

• The vertex-figure at every vertex is a skeletal polygon.

As a consequence of the last item, every vertex of a skeletal polyhedron has degree at least 3,
and every edge of a skeletal polyhedron belongs to precisely two faces. When convenient we
may refer to the vertices, edges and faces of P by 0-faces, 1-faces and 2-faces, respectively.
The 1-skeleton of P consists of the sets of vertices and edges of P .

Skeletal polygons and polyhedra correspond respectively to faithful realizations of ab-
stract polygons and abstract polyhedra in E3 as defined in [18, Chapter 5]. Unless explicitly
stated, by ‘polygon’ and ‘polyhedron’ we shall understand ‘skeletal polygon’ and ‘skeletal
polyhedron’, respectively. In this paper, all polyhedra that we consider are finite.

A flag of a polyhedron P is a triple of incident vertex, edge and face. Flags that differ in
exactly one element are called adjacent, and i-adjacent if they differ precisely in the i-face.
The axioms of polyhedra imply that for every i ∈ {0, 1, 2} and for every flag Φ there exists
a unique i-adjacent flag of Φ, and we shall denote it by Φi.

A polyhedron P is equivelar if there exist integers p and q such that all its faces are
p-gons and all its vertices are q-valent. In such cases the Schläfli type of P is defined as the
ordered pair {p, q}.

A dual of P is a polyhedron Pδ where for i ∈ {0, 1, 2} there is a bijection between the
set of i-faces of P and the set of (2 − i)-faces of Pδ, where an i-face F is contained in a
j-face G of P if and only if the (2 − j)-face of Pδ corresponding to G is contained in the
(2− i)-face of Pδ corresponding to F . Many notions of polyhedra have a natural dual notion
that interchanges the role of vertices and faces.

A Petrie walk of a polyhedron P is a closed walk on the 1-skeleton of P where every two
consecutive edges belong to a face, but three consecutive edges never do. The Petrial of P
is the collection Pπ of Petrie walks of P . Its sets of vertices, edges and vertex-figures are
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the same as those of P , and so it may fail the definition of polyhedron only when the Petrie
walks of P are not polygons. In case that Pπ is a polyhedron then (Pπ)π = P .

A symmetry of a polyhedron P is an isometry preserving P . We shall denote the group
of symmetries of P by G(P). If the affine span of P has dimension 3 (as it will be the case
for all polyhedra in this paper) then the flag stabilizers under G(P) must be trivial. If G(P)
induces k orbits on flags then P is said to be a k-orbit polyhedron; 1-orbit polyhedra are
called regular.

The symmetry type graph T (P) of P is a connected pre-graph (allowing semi-edges and
multiple edges) with edges labeled in {0, 1, 2}. The vertex set of T (P) is the set of flags-
orbits of P . Two vertices X1 and X2 of T (P) are joined by an edge labeled i whenever a flag
in X1 is i-adjacent to a flag in X2. In addition, if two flags in the same orbit are i-adjacent
then there is a semi-edge labeled i at the corresponding vertex.

Symmetry type graphs illustrate the local configuration of flags according to their flag
orbits. The connected components of T (P) after removing the edges labeled i correspond
to the distinct orbits of i-faces under G(P). Polyhedra with the same symmetry type graph
are said to be in the same class.

According to [8] and [20] there are three classes of 3-orbit polyhedra, called 30,1, 31 and
31,2 in [8]; they correspond respectively to classes 32, 302 and 30 in [20]. Their symmetry
type graphs are those in Figure 1.

Figure 1: Symmetry type graphs of 3-orbit polyhedra

We will say that an i-face F of a polyhedron P is 1-symmetric if for every j ∈ {0, 1, 2}\{i}
there is a symmetry of P that maps a flag containing F to its j-adjacent flag. In the symmetry
type graph of P , 1-symmetric i-faces are those in a flag orbit represented by a vertex with
semi-edges with labels in {0, 1, 2} \ {i}. In particular, every 3-orbit polyhedron has some
1-symmetric edges; polyhedra in class 30,1 have some 1-symmetric vertices; and polyhedra
in class 31,2 have some 1-symmetric faces.

Under the assumption of trivial flag stabilizers underG(P), the stabilizer of a 1-symmetric
i-face F is a dihedral groupDk with 2k elements generated by involutions Tj, j ∈ {0, 1, 2}\{i}
that fix F as well as the j-face of a given flag containing F . When i = 1 then k = 2 and
hence the edge stabilizer of a 1-symmetric edge is isomorphic to Z2 × Z2. If i = 0 then F is
a vertex and k is its degree, whereas if i = 2 then F is a face and k is its number of edges.

A 1-symmetric face must be a regular polygon; it may be planar or skew. We will write
kp to denote a planar k-gon and ks to denote a skew k-gon. When k is odd, then a regular

4



k-gon is necessarily planar, and so we merely denote it by k.

In principle, it is possible to distinguish 1-symmetric faces even more finely by, for exam-
ple, distinguishing convex polygons from star polygons. However, our notion of vt-equivalence
that we will develop in Section 4 does not distinguish between the two types of polygons
whenever the vertices are 3-valent and the symmetry group contains a plane reflection, which
end up accounting for a large proportion of 3-orbit polyhedra in E3. Thus we will not dis-
tinguish between different kinds of planar polygons.

If for every edge e of F there exists T ∈ G(P) preserving F while interchanging the
endpoints of e, but there is no non-trivial symmetry of P preserving F and fixing one of its
vertices, we say that F is 2-symmetric. A face of this kind admits a symmetry acting like
a 2-step rotation and hence it must have an even number of edges. The symmetries of P
preserving F induce 2 orbits on the flags containing F . Among these symmetries, those that
act on F like reflections are illustrated in Figure 2 (a). The 2-symmetric faces of a 3-orbit
polyhedron must be vertex-transitive, and they may be planar or skew. As for 1-symmetric
faces, we will denote planar and skew faces with a subscript of p or s.

As pointed out in [9], besides the 2-symmetric faces described here, there are other
possibilities of polygons and groups acting on them with 2 orbits on the flags, but those
scenarios do not appear in the analysis of 3-orbit polyhedra.

We say that a face F is 3-symmetric whenever the subgroup of G(P) preserving F induces
on it 3 flag orbits. Such faces admit a symmetry of P acting like a 3-step rotation, but no
symmetries acting like a 1- or 2-step rotation. This implies that the number of edges of
F is divisible by 3. Furthermore, there are elements of G(P) preserving F that act on it
like reflections; some such reflections fix a vertex and some fix midpoints of edges. The
symmetries acting like reflections on a 3-symmetric hexagon are illustrated in Figure 2 (b).

The symmetry of a 3-symmetric face that fixes a vertex must either be a plane reflection
or a half-turn, while the symmetry that fixes the midpoint of an edge could be a plane
reflection, half-turn, or central inversion. Of the six possible cases, we encounter three of
them: where both symmetries are plane reflections, where both are half-turns, and where
the symmetry that fixes a vertex is a reflection and the other symmetry is a half-turn. We
will denote a 3-symmetric k-gon by kr, kh, or krh according to which of these possibilities it
realizes. Note that if k is odd, then krh is not possible. Also, if k = 3 then the geometry of
the face does not depend on whether the generating symmetry is a reflection or half-turn,
and so we merely denote the face by 3.

We extend the definitions of 2-symmetric and 3-symmetric from faces to vertices by
duality. In this way, a 2-symmetric vertex v has even degree and there are symmetries of
P that fix v and any of the edges that contain v. On the other hand, 3-symmetric vertices
are such that a symmetry of P acts like a 3-step rotation around them, but no element in
G(P) acts like a 1-step or 2-step rotation around them. There are symmetries of P that fix
a 3-symmetric vertex while reversing the cyclic order of the edges around it. The degree of
a 3-symmetric vertex is divisible by 3.

Every 3-orbit polyhedron has two orbits on edges. One orbit consists of 1-symmetric
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(a) (b)

Figure 2: Reflections of 2-symmetric and 3-symmetric hexagons

edges, and the other of edges containing flags in two distinct orbits. If P is a 3-orbit
polyhedron in class 30,1 then there is no symmetry swapping the endpoints of a 2-orbit edge,
but there is a non-trivial simmetry fixing it pointwise. If P belongs to either of the other
two classes then there are no non-trivial symmetries fixing 2-orbit edges pointwise, but for
each edge there is a symmetry that swaps its endpoints. For convenience, we shall refer to
2-orbit edges as 2-symmetric edges regardless of the class of 3-orbit polyhedra in question.

2.1 Class 30,1

Polyhedra P in class 30,1 have two orbits of vertices. One orbit contains 1-symmetric vertices,
and the other contains 2-symmetric vertices.

These polyhedra also have two orbits of edges. One of these orbits contains 2-symmetric
edges joining a 1-symmetric vertex with a 2-symmetric vertex. The stabilizer of an edge e
in this orbit has only one non-trivial element; this element swaps the two faces that contain
e while fixing both endpoints.

The other orbit of edges contains half as many edges as the previous orbit. These edges
are 1-symmetric and join two 2-symmetric vertices. The neighbors of a 2-symmetric vertex
v2 alternate between 1-symmetric and 2-symmetric vertices, implying the following results.

Lemma 2.1. Every 2-symmetric vertex of a polyhedron in class 30,1 is incident to at least
two 1-symmetric edges and therefore its degree is an even number d ≥ 4.

Proposition 2.2. [9, Proposition 3.3] Every skeletal polyhedron in class 30,1 must have at
least two 1-symmetric vertices and three 2-symmetric vertices.

Polyhedra in class 30,1 are face-transitive. The faces are 3-symmetric and therefore their
number of edges is divisible by 3. One third of the edges in each face are 1-symmetric
edges, and two consecutive 1-symmetric edges in a 3-symmetric face are separated by two
2-symmetric edges. The next lemmas are consequences of the symmetries of 3-symmetric
polygons.

Lemma 2.3. Let F be a 3-symmetric face of a 3-orbit polyhedron in class 30,1, and let e be
an edge of F between two 2-symmetric vertices. Let T be a nontrivial involutory symmetry
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that fixes F and interchanges the two endpoints of e. Then T does not fix any 2-symmetric
vertex of F .

Proof. Suppose that F is a k-gon with vertices labeled (1, 2, . . . , k) and suppose that T fixes
some vertex of F . Without loss of generality we may assume that T interchanges 1 and k.
Then it follows that it interchanges every i with k + 1− i. In particular, if T fixes a vertex,
then k must be odd. Furthermore, since the number of 2-symmetric vertices in F must
be 2k/3 and the number of 1-symmetric vertices must be k/3, there is an even number of
2-symmetric vertices and an odd number of 1-symmetric vertices. It follows that the vertex
fixed by T is 1-symmetric.

Given a 3-orbit polyhedron P in class 30,1 we may preserve one orbit of vertices, while
moving each of the vertices in the other orbit a fixed amount along the line that joins it with
the center of P . We say that two polyhedra obtained in this way are vi-equivalent. We will
study 3-orbit polyhedra in class 30,1 up to vi-equivalence.

If P is in class 30,1, then its faces are 3-symmetric a-gons, and it has 1-symmetric b-valent
vertices and 2-symmetric c-valent vertices, for some a,b, and c. We note that moving one
orbit of vertices may disrupt the planarity of a vertex-figure, so since we classify 3-orbit
polyhedra in class 30,1 up to vi-equivalence, we do not record whether the vertex-figures
are planar or not. As described earlier, we will denote the faces as ar, ah, or arh. We will
associate to each polyhedron in this class an extended Schläfli symbol like {ar, (b, c)}.

2.2 Class 31

Polyhedra in class 31 are vertex- and face-transitive. Their vertices and faces are 3-symmetric.
They can be described by a Schläfl symbol like {9r, 6h}, where for both the faces and vertex-
figures, we describe the generating involutions of their symmetry group.

They have two orbits on edges. One edge orbit contains 1-symmetric edges. The stabilizer
of an edge e in the other edge orbit only contains the identity element and an element that
swaps the two endpoints of e while interchanging the faces containing e.

They have two kinds of Petrie paths. There are some that contain only 2-symmetric
edges, and some that alternate 1-symmetric and 2-symmetric edges.

2.3 Class 31,2

Polyhedra in class 31,2 behave in a dual way to polyhedra in class 30,1. They are vertex-
transitive and all their vertices are 3-symmetric. They have two orbits on edges. One edge
orbit contains 1-symmetric edges. The elements of the stabilizer of an edge e in the other
orbit swap the endpoints of e and preserve the two faces containing e.

These polyhedra have two orbits of faces; one containing 1-symmetric faces and one
containing 2-symmetric faces. The 1-symmetric edges belong to two 2-symmetric faces,
whereas the 2-symmetric edges belong to a 1-symmetric face and to a 2-symmetric face.
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The Petrie paths of polyhedra in class 31,2 are all 3-symmetric. In each of them, every
third edge is 1-symmetric, and two consecutive 1-symmetric edges are separated by two
2-symmetric edges.

If P is in class 31,2, then its faces consist of 1-symmetric a-gons, 2-symmetric b-gons,
and c-valent vertices. The vertices are described as in class 31. The 1-symmetric faces and
2-symmetric faces are either planar or skew, and thus are denoted by ap or as for example. If
a is odd, then the face is necessarily planar and we do not include a subscript. (On the other
hand, b must be even, and so we always use its subscript.) We describe such a polyhedron
with a Schläfli symbol {(a, b), c} with the subscripts mentioned; e.g., {(3, 8s), 6rh}.

2.4 General results

Now let us examine in more detail the geometric structure of the symmetry group of a 3-orbit
polyhedron. We start with three useful results on the edges of 3-orbit polyhedra.

Lemma 2.4. Let P be a 3-orbit polyhedron with trivial flag stabilizers under G(P). Then
there exists an edge orbit O under G(P) such that for each e ∈ O, the stabilizer in G(P) of
e is generated by:

• an involution fixing e pointwise that interchanges the two faces containing e,

• an involution that interchanges the endpoints of e and preserves the two faces containing
e.

Furthermore, these involutions commute.

Proof. As mentioned above, the three symmetry type graphs of 3-orbit polyhedra indicate
the presence of 1-symmetric edges. The symmetry group of such an edge e acts transitively
on the four flags containing e, and in particular there are symmetries that a given one of
these flags to its 2-adjacent flag and to its 0-adjacent flag. These symmetries act on the
vertices and faces incident to e precisely as described in the items of the statement.

The commutativity follows from the facts that for every flag Φ the flags (Φ0)2 and (Φ2)0

are equal. Indeed, trivial flag stabilizers imply that there is a unique symmetry mapping Φ
to (Φ0)2 = (Φ2)0.

Lemma 2.5. Let F be a face of a 3-orbit polyhedron P with irreducible symmetry group.
Consider a vertex v of F and its neighbors u and w, and suppose that the edge connecting
u and v is 1-symmetric. Let T be the nontrivial symmetry of P that fixes u and v. Then T
does not fix w.

Proof. First, recall that every 1-symmetric edge does have a nontrivial symmetry that fixes
u and v. This symmetry cannot fix F ; otherwise it would fix a flag, implying that it is the
identity. If T fixed w, then F and T (F ) would both contain the vertices u, v, and w in the
same order. But then the vertex-figure at v would contain a 2-cycle and be disconnected.
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The Orbit-Stabilizer Theorem immediately implies the following:

Proposition 2.6. Let P be a 3-orbit polyhedron such that |G(P)| = N . Then P has precisely
N/4 1-symmetric edges and N/2 2-symmetric edges.

The symmetry groups of 3-orbit polyhedra must contain many involutions, as illustrated
by the following two results. The first one follows directly from the description of 1-, 2- and
3-symmetric vertices. The second one is a direct consequence of [8, Corollary 2].

Lemma 2.7. Let P be a 3-orbit polyhedron and v one of its vertices. Then the stabilizer in
G(P) of v contains a non-trivial involution. Furthermore, if P is not vertex-transitive, then
the stabilizer of v is generated by two involutions.

Proposition 2.8. If P is a 3-orbit polyhedron then G(P) is generated by involutions.

Involutions shall play an important role in our analysis of 3-orbit polyhedra. In that
analysis we shall make use of the following obvious remark.

Remark 2.9. Let F be a 3-symmetric face, and let T be a nontrivial involutory symmetry
of F . If T does not fix any vertices of F , then F has an even number of vertices.

Now we provide a condition on the number of vertices of a 3-orbit polyhedron in terms
of the size of its symmetry group.

Proposition 2.10. If P is a 3-orbit polyhedron with symmetry group of order N , then the
number V of vertices satisfies V >

√
3N/2.

Proof. A 3-orbit polyhedron with a group of order N has 3N flags and 3N/4 edges. So
there must be at least 3N/4 pairs of vertices, which means V (V − 1)/2 ≥ 3N/4. Then
V (V − 1) ≥ 3N/2; in particular V 2 > 3N/2 and the result follows.

In upcoming sections we shall encounter graphs where all the vertices lie on some sphere
S. If there are no edges joining antipodal vertices then we may project the edges to S and
obtain an embedding of the graph on the sphere (possibly with edge crossings). In order to
describe the faces of a polyhedron with such a 1-skeleton we shall say that the face F skips
m edges at some vertex v with degree d if in some neighborhood of v on S the edges of F
leave m edges on one side and d −m − 2 on the other. When doing so, we assume a fixed
global orientation of S, so that when tracing the face we always skip edges on the same side.

For example, when describing the great dodecahedron (see [5]) we may say that we
consider the 1-skeleton of the icosahedron and build the faces so that they skip an edge
at every vertex. We could think of the Petrial of a Platonic solid P of degree d as the
polyhedron with the 1-skeleton of P where the faces skip alternatingly 0 and d− 2 edges.

When determining the candidate faces of a polyhedron with a given 1-skeleton we must
take into account that the resulting set of faces may not yield a polyhedron because the
vertex-figure is not connected (failing the third condition to be a polyhedron). For example,
if the 1-skeleton is that of the octahedron then we cannot skip one edge at every vertex,
since we would be left with the three equatorial squares; in this situation each vertex-figure
is a pair of line segments intersecting only in their midpoints.
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2.5 Operations on polyhedra

If P has a dual, in some cases it is possible to construct a canonical dual of P by taking as
vertices of Pδ the barycenters of the faces of P . Then the edges and faces are determined by
the duality condition. With Pδ arising from this construction, G(P) = G(Pδ), and we will
simply call Pδ ‘the dual of P ’. However, we may encounter polyhedra where two or more
faces have the same barycenter, in which case the resulting structure would not satisfy our
definition of polyhedron.

For most of the polyhedra P we will describe, there are pairs of faces that share more
than one edge. Such a polyhedron cannot have a (geometric) dual, since such a dual would
have a pair of vertices connected by multiple edges. In fact, if the faces of P are too big,
then no dual can exist:

Proposition 2.11. Suppose P is a 3-orbit polyhedron with symmetry group of size N and
with a dual. If the faces of P are all 3k-gons, then k <

√
N/6.

Proof. By Proposition 2.10, P must have more than
√

3N/2 faces. Each face is part of 6k
flags and there are 3N flags total, and the result is simple from there.

Proposition 2.11 is useful in filling out the tables in Section 14, but we will not explicitly
comment on when we are using it.

Note that if P has a dual Pδ, then G(P) = G(Pδ). Similarly, if the Petrial of P (Pπ) is
a polyhedron, then G(P) = G(Pπ).

The three classes of 3-orbit polyhedra are related by duality and Petriality as follows.

Lemma 2.12. [9, Lemma 3.4] Let P be a 3-orbit polyhedron having a geometric dual Pδ.

• If P is in class 30,1 then Pδ is in class 31,2.

• If P is in class 31 then Pδ is also in class 31.

• If P is in class 31,2 then Pδ is in class 30,1.

Lemma 2.13. [9, Lemma 3.5] Let P be a 3-orbit polyhedron whose Petrial Pπ is a polyhe-
dron.

• If P is in class 30,1 then Pπ is also in class 30,1.

• If P is in class 31 then Pπ is in class 31,2.

• If P is in class 31,2 then Pπ is in class 31.

In addition to duality and Petriality, there are a few more operations on polyhedra that
play an important role in our classification. The first is truncation. In the convex setting, we
may think of ‘cutting off’ each vertex, obtaining a new polyhedron with two vertices on the
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relative interior of each original edge, and with two kinds of faces: those that correspond to
the original vertex-figures and those that are truncations of the original faces, now with twice
the number of edges as the original faces. More generally, truncation (and related operations)
can be applied to skeletal polyhedra and indeed to abstract polyhedra; see [26] for a detailed
description. The truncation of a regular polyhedron is in most cases a 3-orbit polyhedron,
accounting for their prominence in our analysis. If P is an abstract polyhedron, we will use
Tr(P) to denote the truncation of P . We will also use T[p,q] to denote the 1-skeleton of the
(geometric) truncation of {p, q}.

Dual to truncation is an operation known as the Kleetope operation. Applied to convex
polyhedra, it can be thought of as attaching a pyramid to each face. For example, the
Kleetope of the cube is the tetrakis hexahedron, a 3-orbit polytope. For our purposes, we
will define the Kleetope operation on abstract polyhedra only, defined by Kl(P) = Tr(Pδ)δ.
We will also use K[p,q] to denote the 1-skeleton of the Kleetope of {p, q}.

The last operation is actually a family of three related operations, and we first describe
the effect on a 1-skeleton S. The first operation is called ζ (see [17]), which replaces every
edge {u, v} with the edges {u,−v} and {−u, v}. Since a 3-orbit polyhedron has two orbits of
edges, we may also choose to perform this operation only to the 1-symmetric edges or only
to the 2-symmetric edges. We will denote the operation that replaces all i-symmetric edges
{u, v} with {u,−v} and {−u, v} by ζi. (A word of caution: ζi has a different definition in
[17] but is used sparingly.) Note that ζ = ζ1ζ2.

In most cases we encounter, S will be centrally symmetric. However, we will also find it
convenient to apply ζi to 1-skeleta (and polyhedra) that are not centrally symmetric, such
as the truncated tetrahedron.

Definition 2.14. Let S be the 1-skeleton of a 3-orbit polyhedron with vertex set V and edge
set E1∪E2 where E1 contains the 1-symmetric edges and E2 contains the 2-symmetric edges.
Let V = V ∪ −V , and for i = 1, 2 let

Ei = {{u,−v} : {u, v} ∈ Ei}.

Then:

(a) Sζ1 is one connected component of the 1-skeleton (V ,E1 ∪ E2).

(b) Sζ2 is one connected component of the 1-skeleton (V ,E1 ∪ E2).

(c) Sζ is one connected component of the 1-skeleton (V ,E1 ∪ E2).

We note that in the cases where we get a disconnected graph and have to take one
connected component, these two components are congruent; in fact, they are the image of
one another under a central inversion.

To extend these operations to polyhedra, we need to explain how the faces of Pζi should be
obtained from the faces of P . Informally, the idea is this: start with one typical face from each
orbit of faces. We may write the face as a cyclic sequence of vertices (v1, v2, . . . , vk). Then,
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depending on which ζi we are using and which kinds of edges the face uses, some vertices
vi are replaced with their antipode −vi. In some cases (that will become clear), we need
to apply this operation to the walk that goes twice around the face: (v1, . . . , vk, v1, . . . , vk).
In any event, the effect of applying ζi now turns our original face into a new cyclic walk
(v′1, . . . , v

′
m), with m = k or m = 2k. In some cases, we may have m = k but the new

cyclic walk actually has period m/2, in which case we just consider the new face to be
(v′1, . . . , v

′
m/2). In any case, we define the faces of Pζi to be the image of such cyclic walks

under the symmetry group. We note that it does sometimes happen that the new faces are
not polygons, in which case Pζi is not a polyhedron.

Now let us describe the new faces in more detail.

Definition 2.15. Let F = (v1, . . . , vk) be a face of a 3-orbit polyhedron.

(a) If F is 1-symmetric, then all of the edges are 2-symmetric. So ζ1 fixes F .

(a) If k is even, then F ζ2 is (v1,−v2, v3, . . . , vk−1,−vk).

(b) If k is odd, then F ζ2 is (v1,−v2, v3, . . . ,−vk−1, vk,−v1, v2, . . . ,−vk).

(b) If F is 2-symmetric, then the edges alternate between 1-symmetric and 2-symmetric.
Without loss of generality, we may assume that the edge from vi to vi+1 is 1-symmetric
when i is odd, and 2-symmetric when i is even.

(a) If k is divisible by 4, then F ζ1 is (v1,−v2,−v3, v4 . . . ,−vk−1, vk) and F ζ2 is
(v1, v2,−v3,−v4, v5, . . . ,−vk−1,−vk).

(b) If k is not divisible by 4, then F ζ1 is (v1,−v2,−v3, v4, . . . , vk−1,−vk,−v1, v2, . . . , vk)
and F ζ2 is (v1, v2,−v3,−v4, v5, . . . , vk−1, vk,−v1,−v2, . . . ,−vk).

(c) If F is 3-symmetric, then without loss of generality, the 1-symmetric edges are {vi, vi+1}
with i divisible by 3, and the remaining edges are 2-symmetric.

(a) If k is even (and thus, divisible by 6) then F ζ1 is (v1, v2, v3,−v4,−v5,−v6, v7, . . . ,−vk).

(b) If k is odd, then F ζ1 is (v1, v2, v3,−v4,−v5,−v6, v7, . . . , vk,−v1,−v2,−v3, . . . ,−vk).

(c) For all k, F ζ2 is (v1,−v2, v3, v4,−v5, v6, . . . ,−vk−1, vk).

We note that, strictly speaking, the description of F ζi in Definition 2.15 depends on a
particular ordering of the vertices of a face, but since we are really only interested in how
ζi acts on the whole orbit of faces, it does no harm to make an arbitrary choice of how we
describe an individual face.

The action of ζ2 on 1-symmetric faces has the same effect on them as applying ζ to a
regular polygon, which is described in [17, Thm. 5.3]. In our analysis, the 1-symmetric
faces are typically either planar faces whose affine hull does not contain the center of the
polyhedron, or skew faces where the center of the face coincides with the center of the
polyhedron, and ζ2 interchanges these two possibilities.
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In a similar way, both operations ζi will transform a planar 2-symmetric face whose affine
hull does not contain the center of the polyhedron into a skew face whose center coincides
with the center of the polyhedron.

Now suppose F is a 3-symmetric face, and fix a 1-symmetric edge e1. Consider the
symmetry T1 of F that interchanges the endpoints of e1. Then if Pζ2 is a polyhedron,
the same symmetry T1 fixes the induced face F ζ2 and interchanges the endpoints of e1.
Similarly, if v1 is a 1-symmetric vertex of F , there is a symmetry T2 of F that fixes v1 while
interchanging its neighbors, and the same symmetry will act in the same way on F ζ2 . Thus
we see that the symmetry group of a 3-symmetric face remains unchanged under ζ2, and so
the size and the type of the face (nr, nh, or nrh) remain unchanged as well.

We can now extend these operations to polyhedra.

Definition 2.16. Let P be a 3-orbit polyhedron. For i = 1, 2 we define a new structure P ζi

(which may or may not be a polyhedron) as follows:

(a) If S is the 1-skeleton of P , then the 1-skeleton of P ζi will be Sζi.

(b) The faces of P ζi are obtained from the faces of P in the manner described in Defini-
tion 2.15. We keep only those faces that lie in the connected component of Sζi that we
chose.

Let us note that if P is vertex-intransitive, then Pζ2 is vi-equivalent to P , since up to
vi-equivalence we may scale one orbit of vertices independently of the other and so we can
send, say, every 1-symmetric vertex v to −v. Thus, we will only use ζ2 on vertex-transitive
polyhedra.

Example 2.17. Let P be the truncated cube (Figure 3a). Then the 1-skeleton of P ζ1 has
two connected components, each containing 12 vertices (Figure 3b). The 1-skeleton of P ζ2

is connected, and the faces are skew hexagons and skew octagons (Figure 3c where only one
2-symmetric face is shown).

(a) (b) (c)

Figure 3: The truncated cube Tr({4, 3}) together with Tr({4, 3})ζ1 and Tr({4, 3})ζ2 ; 1-
symmetric edges are dotted and 2-symmetric edges are solid
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3 Finite irreducible groups of isometries of E3

In this section we recall the finite irreducible groups of isometries of E3. Throughout we
follow [12], although with a different notation.

All finite groups of isometries have a fixed point. A finite group G of isometries of E3 is
said to be affinely reducible whenever there is a setwise fixed line, and hence also a setwise
fixed plane (the orthogonal complement of the fixed line through the fixed point). Finite
groups of isometries that are not affinely reducible are called affinely irreducible.

There are seven finite affinely irreducible groups of isometries of E3. They are tightly
linked with the symmetry groups of the Platonic solids, and are described next.

The rotational tetrahedral group [3, 3]+ is the group of orientation preserving symmetries
of the tetrahedron. It contains 12 elements and can be understood as the alternating group
on the four vertices of the tetrahedron.

The full tetrahedral group [3, 3] is the group of all symmetries of the tetrahedron and
contains 24 elements. It can be identified with the group of permutations of the vertices of
the tetrahedron, and hence it is isomorphic to the symmetric group S4.

The rotational octahedral group [3, 4]+ is the group of orientation preserving symmetries
of the cube (and of the octahedron). It contains 24 elements and can be understood as the
symmetric group on the four main diagonals of the cube.

The full octahedral group [3, 4] is the group of all symmetries of the cube and contains
48 elements. It is isomorphic to the direct product S4 × C2 of the symmetric group on 4
elements with a cyclic group of order 2. The central element of [3, 4] is the central inversion
with respect to the center of the cube.

The full octahedral group contains two index-two subgroups besides the rotational octa-
hedral group. They can be understood through the two vertex-disjoint tetrahedra inscribed
in the cube. In particular, the full tetrahedral group is the index-two subgroup of the full
octahedral group consisting of all isometries preserving the two inscribed tetrahedra of the
cube.

The group denoted by [3, 3]∗ in [24] is the group of all orientation preserving isometries
that fix the two tetrahedra of the cube together with all orientation reversing isometries that
interchange these two tetrahedra. Since it includes the central inversion with respect to the
center of the cube, it is isomorphic to A4 × C2.

The rotational icosahedral group [3, 5]+ is the group of orientation preserving symmetries
of the dodecahedron (and of the icosahedron). It contains 60 elements and can be understood
as the alternating group on the five cubes inscribed in the dodecahedron.

Finally, the full icosahedral group [3, 5] is the group of all symmetries of the dodecahedron
and contains 120 elements. It is isomorphic to the direct product A5 ×C2 of the alternating
group on 5 elements with a cyclic group of order 2. The central element of [3, 5] is the central
inversion with respect to the center of the dodecahedron.

No polyhedron with symmetry group [3, 4]+ or [3, 5]+ is invariant under orientation re-
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versing isometries. It follows that all polyhedra with those symmetry groups are handed in
the sense that a right polyhedron cannot be overlapped into a left polyhedron through a
continuous motion. Nevertheless, right and left handed versions of the same polyhedron are
similar to each other, and such a polyhedron appears only once in our enumeration.

The following lemma will be used in subsequent sections. It can be proven by direct
inspection.

Lemma 3.1. Let G ∈ {[3, 3], [3, 4], [3, 5]} and T ∈ G of order m > 2. Then no power of T
is a plane reflection.

4 Affinely irreducible 3-orbit polyhedra

In the following sections we shall enumerate all 3-orbit polyhedra P in E3 where G(P) is
irreducible. Since the vertex set spans the entire 3-dimensional space, the flag stabilizers in
G(P) are trivial.

4.1 General results on symmetry groups of 3-orbit polyhedra

Not every finite irreducible group of isometries of E3 is the symmetry group of a 3-orbit
polyhedron.

Theorem 4.1. There are no 3-orbit polyhedra P in E3 whose symmetry group G(P) is either
[3, 3]+ or [3, 3]∗.

Proof. This follows from Proposition 2.8, since neither [3, 3]+ nor [3, 3]∗ is generated by its set
of involutions. To see this, note that all involutions in these two groups fix each coordinate
axis setwise.

Furthermore, not every finite irreducible group that remains is the symmetry group of a
vertex-intransitive 3-orbit polyhedron.

Theorem 4.2. There are no 3-orbit polyhedra in class 30,1 whose symmetry group is [3, 4]+

or [3, 5]+.

Proof. By Lemma 2.7, each vertex of a polyhedron in class 30,1 has a stabilizer that is gener-
ated by two involutions. When the symmetry group is [3, 4]+ or [3, 5]+, the only involutions
are half-turns, and the only point that is stabilized by distinct half-turns is the center of the
polyhedron, contradicting Proposition 2.2.

Let us discuss our general approach in the following sections. In each section, we will
focus on a particular group G. We start by including a table with information about the
group, which looks like the following:
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Information about [3, 3]
Description Symmetry group of a tetrahedron T
Order 24
Admissible vertex orbits 4, 6, 12

Involutions
6 plane reflections
3 half-turns whose mirrors join midpoints of edges of T

Since the number of vertices in each orbit must be larger than 1 (by Proposition 2.2) and
since each vertex is fixed by some involution (see Lemma 2.7), the row ‘admissible vertex
orbits’ only includes sizes of orbits that meet those restrictions.

For G ∈ {[3, 3], [3, 4], [3, 5]}, where there is the possibility of polyhedra in class 30,1,
we then include a table the summarizes the basic combinatorics that are possible for such
polyhedra:

Vertex-intransitive polyhedra with group [3, 3]
1-symmetric edges 6
2-symmetric edges 12
1-symmetric vertices four 3-valent
2-symmetric vertices four 6-valent or six 4-valent

Similarly, for vertex-transitive polyhedra, we start with the following table, which uses
Proposition 2.6, Lemma 2.7, and Proposition 2.10:

Vertex-transitive polyhedra with group [3, 3]
1-symmetric edges 6
2-symmetric edges 12
Vertices 12 3-valent

In both cases, we are sometimes able to rule out other sizes of vertex orbit using further
geometric arguments. Then we identify the possible 1-symmetric and 2-symmetric edges by
considering the sizes of orbits of pairs of points, and considering that we need the 1-skeleton
to be connected. Finally, once we have identified a possible 1-skeleton, we determine the
possible faces, and then check which choices of faces give us connected vertex-figures.

Some of the 1-skeleta that arise are cloned graphs. We recall that the cloned graph
of a graph with vertex and edge sets {v1, . . . , vk} and A, respectively, has as vertex set
{v1, . . . , vk} ∪ {v′1, . . . , v′k} and as edge set A ∪ {v′w : vw ∈ A}. We can similarly define a
cloned 1-skeleton by taking an existing 1-skeleton and then making a copy of the vertices,
but dilated so that the new vertices do not overlap the old ones; then we can add the line
segments necessary so that the graph of the new 1-skeleton is a cloned graph. We will use
Cl[p,q] to denote the cloned 1-skeleton of the polyhedron {p, q}.

When studying vertex-transitive polyhedra P with G(P) ∈ {[3, 4], [3, 5]} we may prefer
to visualize them as bidimensional objects. The vertex-set is contained in a sphere S2, and
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the edges may be projected to geodesics of S2, as long as they do not join antipodal points.
The combinatorics of P can then be completely described in terms of the set of points and
projections of edges in S2, by establishing which cycles correspond to faces.

This visualization is particularly useful when P is centrally symmetric, since then we can
project its immersion to S2 into the projective plane P2. There we represent the image of
P under the projection as a set of points with a set of geodesics between them representing
edges, and indicating which of those edges are in the same face. As we shall see, the
projections of k-gonal faces in S2 may transform into k-gonal polygons, (k/2)-gonal polygons,
or degenerate polygons where some vertices (but not all) are visited twice, when projected
to P2.

For our analysis we will search for all i-symmetric polygons (i ∈ {1, 2, 3}) with perhaps
multiple vertices in P2 in some given graphs with preestablished 1- and 2-symmetric edges.
Each i-symmetric edge has two distinct lifts from P2 to S2 and so each 1-symmetric polygon
has two distinct lifts to a polygon in S2, while 2- and 3-symmetric polygons have each 4 lifts
to S2.

4.2 Vertex-transitive polyhedra with non-rigid vertex sets

In the enumeration of 3-orbit polyhedra we shall describe several vertex-transitive polyhedra
whose vertices have one degree of freedom (up to similarity). Here we develop the terminology
and strategy to follow for such cases. We start by determining when this occurs.

Proposition 4.3. Let P be a vertex-transitive 3-orbit polyhedron with 3-valent vertices such
that G(P) ∈ {[3, 3], [3, 4], [3, 5]}. Then

(a) The stabilizer of every vertex is of order 2 and is generated by a plane reflection.

(b) The non-trivial element in the pointwise stabilizer of each 1-symmetric edge is a plane
reflection.

Proof. Let v be a vertex of P . From Lemma 2.7 we know that there is a non-trivial involution
T fixing v. Furthermore, since v is contained in 3 edges, it is contained in 6 flags. Vertex-
transitivity of P forces the stabilizer of v in G to consist only of T and the identity element.
Besides plane reflections, the involutions in G are half-turns, and the central inversion if
G ̸= [3, 3]. The axis of every half-turn is contained in a plane reflection, implying that T
cannot be a half-turn, since otherwise the stabilizer of v would have more than 2 elements.
On the other hand, the central inversion only fixes the center of P , and hence it cannot
stabilize v. This proves the first item.

The second item follows from the first, since the pointwise stabilizer of an edge must also
stabilize both its vertices.

The plane reflection in Proposition 4.3 (a) can be defined also in the following alternative
way.
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Lemma 4.4. Let P be a vertex-transitive 3-orbit polyhedron such that each vertex stabilizer
is generated by a plane reflection. Let u, v, w be vertices of P such that there are 2-symmetric
edges {u, v} and {v, w}. Then the reflection plane of the generator of the stabilizer of v is
the bisector of the line segment between the vertices u and w.

Proof. We know that there is a symmetry of P fixing v while swapping its two 2-symmetric
edges. This must be the only non-trivial element in the stabilizer of v, which by hypothesis
is a plane reflection. In order to interchange u and w, the fixed set of the reflection must be
the bisector of the line segment between the vertices u,w.

Proposition 4.3 characterizes the vertex-transitive 3-orbit polyhedra with irreducible sym-
metry group where each vertex stabilizer is generated by a plane reflection. Indeed, if
P is such a polyhedron then G(P) must contain plane reflections and therefore G(P) ∈
{[3, 3], [3, 4], [3, 5]}. Vertex-transitivity forces the number of vertices to be |G(P)|/2, and it
follows from Proposition 2.6 that every vertex has degree 3. The vertices of such polyhedra
have one degree of freedom in the sense explained below.

We may codify the combinatorics of P through the action of G(P) on the vertex set as
follows. The vertices of P are v0G(P), for any given vertex v0 of P . Each edge may be
interpreted as its pair of endpoints, written in the form {v0T1, v0T2} for some T1, T2 ∈ G(P).
Finally, each face may be written as its sequence of vertices (v0T1, v0T2, . . . , v0Tk). In this
way, the vertex set consists of a list of images of v0 under elements of G(P) (the orbit of v0),
the edge set consists of pairs of elements of G(P) applied to v0, and the set of faces consists
of vectors of elements of G(P) applied to v0.

Let R be the generator of the stabilizer of v0 and let Π be its fixed set. If we replace
the base vertex v0 by some other point w0 in Π such that its stabilizer under G(P) is also
⟨R⟩ then we may use the codification above to recover a polyhedron Pw combinatorially
isomorphic to P . The vertex set of Pw is w0G(P). The edge set is now

{{w0T1, w0T2} : {v0T1, v0T2} is an edge of P},

and the set of faces is

{(w0T1, . . . , w0Tk) : (v0T1, . . . , v0Tk) is a face of P}.

By following the convention that the distance from a vertex to the center o of P is some
constant r, we are in practice admitting vertices in the intersection of Π with the sphere
S(o, r) centered at o of radius r. Clearly, a small movement of the vertex is reflected as a
small movement of the entire structure, and so this can be understood as a continuous family
of realizations of the same combinatorial polyhedron. Two polyhedra obtained in this fashion
one from the other will be said to be vt-equivalent (the ’vt’ standing for ’vertex-transitive’).

When choosing the vertex w0 in Π we required that its stabilizer under G(P) is ⟨R⟩. If
the stabilizer is larger then the number of vertices will be smaller, implying that the resulting
structure is no longer combinatorially isomorphic to P . Therefore, vt-equivalent polyhedra
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cannot be taken continuously along all of Π∩S(o, r); in general there will be a finite number
of points where the resulting structure is not isomorphic to the starting polyhedron.

Figure 4 illustrates the concept of vt-equivalence. We take as example the truncated
cube, as shown in (b); the black dotted lines are the 1-symmetric edges; the solid black lines
are the edges of the base face, and the dark gray solid lines are the edges of the remaining 7
triangles. The base vertex v0 is assumed to be in the reflection plane shown in (a), and so it
is allowed to belong to either one of two antipodal pair of edges, or to one of two antipodal
diagonals of squares. The thin dotted line in (a) indicates the intersection with the upper
face of the underlying cube of some reflection plane ∆, defined so that one of the neighbors
of v0 by a 2-symmetric edge is its image under the reflection about ∆. Figure (c) shows the
base triangle f0 together with the three triangles that are joined to f0 by 1-symmetric edges
(again in black dotted lines). This realization can be thought of as flipping the two ends of
each 1-symmetric edge from (b), and carrying the triangles along while flipping the vertices.
Finally, (d) shows a realization where the base vertex is chosen in a diagonal of square. The
black triangle is again the base triangle f0; for convenience, the diagonals of the squares
where the vertices of f0 lie are also indicated in that diagram. The three triangles joined
to f0 by 1-symmetric edges (thin dotted lines) are shown in dark gray lines. The convex
hull of the vertex set of the realizations where v0 is in a diagonal of a square is a (possibly
non-Archimedean) rhombicuboctahedron.

(a) (b) (c) (d)

Figure 4: Vt-equivalent realizations of the truncated cube

The previous discussion can be understood as a variation of Wythoff’s construction,
described in [5, Section 5.7]. In that book it is devoted to polyhedra, and polytopes in
general, constructed from groups generated by reflections. Later it was expanded for more
general polyhedra (see for example [6], [24] and [25]).

4.3 Vertex-transitive polyhedra with 3-valent vertices

The aim of this subsection is to simplify the enumeration of vertex-transitive 3-valent poly-
hedra. Our first step is to show that the enumeration of vertex-transitive 3-valent polyhedra
in class 31 can be obtained from that of polyhedra in class 31,2. That result is preceded by
the following technical lemma.
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Lemma 4.5. Let P be a vertex-transitive 3-orbit polyhedron with 3-valent vertices and such
that G(P) ∈ {[3, 3], [3, 4], [3, 5]}. Then P is vt-equivalent to a polyhedron whose 1-symmetric
edges do not contain its center.

Proof. Let e be a 1-symmetric edge and Π the reflection plane of the non-trivial symmetry
of P that stabilizes e pointwise (see Proposition 4.3).

Assume that the 1-symmetric edges of P contain the center o of P . Then there exists
R ∈ G(P) that swaps the endpoints of e and that it is not the central inversion. In this
situation the fixed set of R intersects Π in a line m, and e is contained in the perpendicular
m′ to m through o in Π. Any valid choice of v0 in (S(o, r) ∩ Π) \ m (see Subsection 4.2)
yields a polyhedron vt-equivalent to P , but whose 1-symmetric edges do not contain o.

Proposition 4.6. Let P be a vertex-transitive finite 3-orbit polyhedron in E3 with 3-valent
vertices and symmetry group [3, 3], [3, 4] or [3, 5]. Then Pπ is a polyhedron.

Proof. We only need to show that all Petrie paths are polygons, since the 1-skeleta and
vertex-figures of P and Pπ are the same.

If some Petrie path π = (x1, . . . , xm, x1) repeats some vertex v then it must repeat at
least one of the three edges incident to v. Suppose that {v, w} is such an edge. Given that
P is either in class 31 or in class 31,2, its Petrie paths can be 1-, 2-, or 3-symmetric polygons
as defined in Section 2. We shall split the discussion according to the kind of symmetry of
π.

Suppose first that π is 1-symmetric and let S be the 1-step rotation along π. Then S
has order greater than 2 and therefore it must be either a rotation or a rotatory reflection.
In either case, the vertex set of π is v⟨S⟩ and the edge set is {v, w}⟨S⟩ implying that π is a
polygon.

Now suppose that π is 2-symmetric and let S be the 2-step rotation along π. In this
situation the vertex set is {v, w}⟨S⟩ and the edge set is {{v, w}, {w, vS}}⟨S⟩ (here we are
assuming that S rotates v two steps in the direction of its neighbor w). The only way to
have a repetition of v in π is if v = wSj for some j ∈ {1, . . . ,m−1}, but in that case vertices
become 4-valent which contradict our hypothesis. (For example, v would be adjacent to w,
to wS−1, to vSj and to vSj+1.)

Finally, suppose that π is 3-symmetric and let S be the 3-step rotation along π. There
are two possible ways on which the edge {v, w} repeats depending on the order on which
the vertices v, w appear in π:

(A) (. . . , v, w, . . . , v, w, . . . ), or

(B) (. . . , v, w, . . . , w, v, . . . ).

These possibilities are illustrated in Figure 5, where 1-symmetric edges are indicated in gray.

If the repetition happens as in (A), then {v, w} cannot be a 1-symmetric edge (see Figure
5 (b)), since otherwise a power of S would take one appearance of {v, w} to the other while
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(a) (b) (c) (d)

w w w

Figure 5: Possibilities of repetition of an edge in π (gray edges are 1-symmetric)

preserving π. This would force the non-trivial pointwise stabilizer of {v, w} to be a power of
S, contradicting Lemma 3.1.

We next assume still that the repetition happens as in (A), and that {v, w} is a 2-
symmetric edge (see Figure 5 (a)). In this situation precisely one of the edges at v in π must
be 1-symmetric (or a power of S would take one appearance of {v, w} to the other while
preserving π contradicting that the pointwise stabilizer of a 2-symmetric edge is trivial),
implying that at the other spot v appears between two 2-symmetric edges. Without loss of
generality, assume that in its first appearance v is incident to a 1-symmetric edge and in its
second one it is incident to two 2-symmetric edges. Then for some k the first appearance of
w is mapped by Sk to the second appearance of v while preserving π. Furthermore, there
exists T ∈ P that preserves π and v while interchanging its two neighbors in its second
appearance (since it is incident to two 2-symmetric edges). It follows that SkT ∈ P swaps
the vertices of the 2-symmetric edge {v, w} while fixing π, a contradiction to the fact that
the symmetry group of π induces 3 orbits on its flags.

We are left with the case where π is 3-symmetric and the repetition occurs as in (B).
We can discard the possibility of {v, w} being 2-symmetric (see Figure 5 (d)) as in the case
where the repetition is as in (A). The only differences is that here it suffices a power of S
(the symmetry T in the previous case plays no role). Therefore we may assume that {v, w}
is 1-symmetric (see Figure 5 (c)).

If {v, w} is 1-symmetric and π does not repeat any 2-symmetric edge then {v, w}Sm/6 =
{v, w} (the order of S is m/3 and {v, w} repeats precisely twice). It follows that the order
of S is even. The order of S cannot be 2, since otherwise π would be a hexagon of the form
(v, w, y, w, v, z), and consecutive edges {w, y} and {y, w} are not possible in Petrie paths.
The symmetry S cannot be a rotatory reflection whose order is twice an odd number, since
otherwise Sm/6 is the central inversion with respect to the center o of P (this is the case for
all such rotatory reflections in G), implying that the midpoint of the edge {v, w} contains o,
which by Lemma 4.5 we may assume not to be true.

The only remaining cases are when G is either [3, 3] or [3, 4], and S is a rotation or
rotatory reflection of order 4. In that situation S2 is a half-turn and its axis must contain
the midpoints of the two 1-symmetric edges of π. Since [3, 3] is a subgroup of [3, 4], we
may assume that the two 1-symmetric edges of π lie on the two lines shown in either of the
cubes in Figure 6. Furthermore, if w is a vertex of π that is not incident to a 1-symmetric
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(a) (b) (c) (d)

Figure 6: Possibilities for the lines containing 1-symmetric edges of π

edge of π then by Lemma 4.4 the stabilizer of w must be the bisector of the line segment
between its two neighbors u and v. Such a bisector is not a plane reflection of [3, 4] if the
1-symmetric edges are in the lines in Figure 6 (c) or (d), since neither u nor v are in the
intersection of two reflection planes in [3, 4]. On the other hand, if the 1-symmetric edges
are in the lines in Figure 6 (a) or (b) then w lies on the plane containing two opposite
vertical edges of the cube, or two opposite vertical altitudes of squares of the cube. In either
situation, vertex-transitivity of P forces the existence of an element in [3, 4] mapping the
reflection plane containing w to that containing u, but these two planes make an angle of
π/4, a contradiction.

Corollary 4.7. The enumerations of all finite polyhedra with 3-valent vertices in class 31

with symmetry groups [3, 3], [3, 4] and [3, 5] consist of the Petrials of all finite polyhedra with
3-valent vertices and with those symmetry groups in class 31,2.

In view of Corollary 4.7 we may restrict our attention to polyhedra in class 31,2. One kind
of 3-orbit polyhedron in that class that frequently occurs is truncations of regular polyhedra.
In what follows we shall show that every 3-orbit polyhedra in class 31,2 is vt-equivalent to
either the truncation of a regular polyhedron, or to its image under the operation ζ2. Let P
be a polyhedron in class 31,2 with 3-valent vertices and symmetry group in {[3, 3], [3, 4], [3, 5]}.

We continue the analysis of the position of the edges of P relative to the center of P .

Lemma 4.8. Let P be a vertex-transitive 3-orbit polyhedron in class 31,2 with 3-valent ver-
tices and such that G(P) ∈ {[3, 3], [3, 4], [3, 5]}. Then the 2-symmetric edges do not contain
the center of P.

Proof. Let f1 be a 1-symmetric face containing the base vertex v0. Then there exists a
rotation or rotatory reflection R ∈ G(P) whose order is at least 3, and acts like a 1-step
rotation on the (2-symmetric) edges of f1. We can conclude that the 2-symmetric edges do
not intersect the center of P , since otherwise it would not be possible to form f1 from the
orbit of such edges under ⟨R⟩.

It can be shown that the conclusion of Lemma 4.8 is also true for 1-symmetric edges
when G(P) ∈ {[3, 4], [3, 5]}. However, if G(P) = [3, 3] there is a particular choice of v0 where
the 1-symmetric edges do contain the center of P . For our purposes we only need Lemma
4.5.
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The next proposition is a direct consequence of Lemmas 4.8 and 4.5.

Proposition 4.9. Let P be a vertex-transitive 3-orbit polyhedron in class 31,2 with 3-valent
vertices and such that G(P) ∈ {[3, 3], [3, 4], [3, 5]}. Then P is vt-equivalent to a polyhedron,
none of whose edges contains the center of P.

We next analyze the 1-symmetric faces of P . Each of them must be invariant under a
rotation or a rotatory reflection of order at least 3, that permutes its edges cyclically.

Lemma 4.10. Let P be a polyhedron in class 31,2 with 3-valent vertices and symmetry group
in {[3, 3], [3, 4], [3, 5]}. Let f be a 1-symmetric face of P, and let R ∈ G(P) of order at least
3 be such that it cyclically permutes the edges of f .

(a) If R is a rotatory reflection then P is vt-equivalent to a polyhedron with skew 1-
symmetric faces.

(b) If R is a rotation then P is vt-equivalent to a polyhedron whose center is not in the
affine span of any of its 1-symmetric faces.

Proof. Let v be a vertex of f and let Π the reflection plane of G(P) containing v. Then the
reflection about Π preserves f , since it is the only non-trivial symmetry of P that fixes v
and f is 1-symmetric. It follows that the axis ℓ of R is contained in Π.

If R is a rotatory reflection and f is planar or R is a rotation and the affine span of f
contains the center of P then v is in the perpendicular of ℓ at the center of P in Π, and we
may choose v outside that perpendicular to obtain another polyhedron Q vt-equivalent to
P . If R is a rotatory reflection, Q has skew 1-symmetric faces; if R is a rotation then the
affine span of the 1-symmetric faces of Q does not contain the center of Q.

In view of Proposition 4.9 and Lemma 4.10 we say that a vertex-transitive 3-orbit poly-
hedron P in class 31,2 with 3-valent vertices and symmetry group in {[3, 3], [3, 4], [3, 5]} is in
general position whenever

• none of its edges contains the center of P ,

• either P has skew 1-symmetric faces, or it has planar 1-symmetric faces whose affine
span do not contain the center of P .

In order to relate polyhedra with planar 1-symmetric faces with polyhedra where they
are non-planar we need the following result.

Proposition 4.11. Let P be a 3-orbit polyhedron in class 31,2 in general position whose
vertices are 3-valent, whose 1-symmetric faces are non-planar (resp. planar), and whose
symmetry group is in {[3, 3], [3, 4], [3, 5]}. Then Pζ2 is a 3-orbit polyhedron in class 31,2, and
its 1-symmetric faces are planar (resp. non-planar).
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Proof. By construction, Pζ2 has 1-symmetric and 2-symmetric faces; hence it is in class 31,2.

Now, if the 1-symmetric faces of P lie on a plane Λ then each 2-symmetric edge of Pζ2

has one endpoint in Λ and the other in the image of Λ under the central inversion at the
center of P (which is not equal to Λ, by general position). Hence, the 1-symmetric faces of
Pζ2 are skew. Similarly, if the 1-symmetric faces of P lie on two parallel planes (image one
of the other under the central inversion) then the 1-symmetric faces of Pζ2 are planar.

Suppose that we can show that the 2-symmetric faces are polygons. Since the 1-symmetric
faces of Pζ2 are always polygons, we have that all its faces are indeed polygons. By definition,
Pζ2 satisfies the first two items of our definition of polyhedron. Furthermore, each vertex
v lies on the plane Π fixing the 1-symmetric edge at v, and the reflection about that plane
swaps the two 2-symmetric edges at v. It follows that in Pζ2 the 1-symmetric edge at v stays
in Π while the two other neighbors of w do not belong to that plane. From this we conclude
that the vertex-figures are triangles, and hence Pζ2 is a polyhedron.

It remains to prove that the 2-symmetric faces are polygons. Let F be a 2-symmetric face
of P . If F = (v1, . . . , vk) then F ζ2 = (v1, v2,−v3,−v4, v5, ...), assuming that the 2-symmetric
edges are the edges from vi to vi+1 when i is even. The only way that F ζ2 can fail to be a
polygon is if some vertex is repeated and incident to two distinct 2-symmetric edges.

So, suppose that F ζ2 has 2-symmetric edges {u, v} and {u,w} with v ̸= w. Then there
must have been 2-symmetric edges {u,−v} and {u,−w} among the edges of F and −F ,
and since these were both polygons, it follows that F contains just one of those edges; say
{u,−v}. (In particular, this implies that F ̸= −F .) Then F and −F have the vertex
u in common. Since F is vertex-transitive and the central involution commutes with all
symmetries of F , it follows that F and −F have all of their vertices in common. Now, since
P is 3-valent, every vertex is incident to a unique 1-symmetric edge. Thus, since F and −F
share all of their vertices, they also share all of their 1-symmetric edges.

Consider a vertex v of F and let {u, v} be the 1-symmetric edge at v. Let {v, w} be the
2-symmetric edge at v that F contains. If −F is contained {v, w}, then F and −F would
have two edges in a row in common, which would cause the vertex-figure at v in P to be
non-polygonal. So −F contains a different 2-symmetric edge at v, and since P is 3-valent
there is a unique other choice {v, w′}. Recall that F and −F share all of their vertices, and
so w′ is a vertex of F as well. It follows that if we start at any vertex of F and follow any
edge out of it, then we reach another vertex of F , so by the connectivity of P it follows that
F (and −F ) contain all the vertices of P . If F is a 2k-gon, then P has 2k vertices, and the
dihedral stabilizer of P acts vertex-transitively on them. However, no dihedral subgroup of
[3, 3], [3, 4] or [3, 5] has an orbit of size 12, 24 or 60, respectively, and those are the required
numbers of vertices of 3-valent 3-orbit polyhedra for each group. We may conclude that the
2-symmetric faces of Pζ2 are polygons, and Pζ2 itself is a polyhedron.

Lemma 4.12. Let P be a vertex-transitive 3-orbit polyhedron in class 31,2 with planar 1-
symmetric faces in general position such that G(P) ∈ {[3, 3], [3, 4], [3, 5]}, and let e be an
edge. Then there exists a plane reflection T ∈ G(P) that preserves e while swapping its
ends.
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Proof. First suppose that e is 1-symmetric. Then by Lemma 4.5 there exists Q vt-equivalent
to P whose 1-symmetric edges do not contain the center of Q. In that situation the three
non-trivial symmetries preserving an edge of Q must be two plane reflections and a half-turn.
Since G(P) = G(Q) and their symmetries act in the same way on their edges, we conclude
that e is invariant under two plane reflections; one fixes it pointwise while the other swaps
its endpoints.

Now, if e is 2-symmetric let f be the 1-symmetric face that contains it. Then there exists
T ∈ G(P) that preserves f while interchanging the endpoints of e. Since T must fix the axis
of the rotation or rotatory reflection that preserves f acting regularly on its edges, and T
also must fix the midpoint of e, it must be a plane reflection.

Now we are ready for the remaining two main theorems of this section.

Theorem 4.13. Let P be a vertex-transitive 3-orbit polyhedron in class 31,2 in general posi-
tion with 3-valent vertices and planar 1-symmetric faces such that G(P) ∈ {[3, 3], [3, 4], [3, 5]}.
Then P is vt-equivalent to a truncation of a regular polyhedron.

Proof. Up to vt-equivalence, we may assume that the convex hulls of the 1-symmetric faces
are small, and in particular that they do not intersect. Let f0 be a 1-symmetric face of P .
Recall that its edges are 2-symmetric.

Since f0 is 1-symmetric, for each of its vertices v there exists Tv ∈ G(P) that preserves
f0 and v, interchanging the two 2-symmetric edges incident to v. Since v is 3-valent, this
means that Tv fixes pointwise the 1-symmetric edge incident to v. From Proposition 4.3 (b)
we conclude that Tv is a plane reflection. Furthermore, if e is an edge of f0 containing v, we
know from Lemma 4.12 that the symmetry Te of P fixing e while swapping its endpoints is
also a plane reflection. We conclude that the stabilizer of f0 in G(P) is generated by the two
plane reflections Tv and Te. As a consequence, there is a rotation TeTv with axis ℓ0 mapping
every edge of f0 to the next one. This rotation cyclically permutes the 1-symmetric edges
incident to the vertices of f0. See Figure 7.
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Figure 7: Local picture of the 1-symmetric face f0

Given any vertex w of f0 we intend to extend the 1-symmetric edge ew at w until it
meets with ℓ0. To justify that this can be assumed to occur, note first that both ew and
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ℓ0 are contained on the invariant plane of the reflection Tw that fixes w while interchanging
its two 2-symmetric edges. Now, if ℓ0 and ew were parallel then our assumption of the
small size of the convex hulls of the 1-symmetric faces implies that the 1-symmetric edges
at vertices of f0 would join f0 with the 1-symmetric face that winds around ℓ0 but at the
other side of the center of P . If G(P) = [3, 3] there is no such face (the group does not
act transitively on the rays of the 3-fold rotation axes), while if G(P) ∈ {[3, 4], [3, 5]} then
the two faces winding around ℓ0 and their 1-symmetric edges joining them would form a
connected component of the 1-skeleton of P , that is not invariant under the entire group, a
contradiction; we conclude that ℓ0 intersects the line spanned by ew. Finally, if we are in the
situation where ℓ0 and ew intersect then we may use vt-equivalence and move w by choosing
it in the plane of the reflection Tw as its image under the reflection by ℓ0 (in this plane), and
adjust the remaining vertices accordingly. (See Figure 8.) In that situation the 1-symmetric
edges will not intersect the rotation axes preserving 1-symmetric edges. Therefore, it is
possible to extend each 1-symmetric edge at both ends until it meets the rotation axes of
the 1-symmetric faces containing its vertices. Let S be that graph.

l

e

Tw w'
w

w

e

0

w'

Figure 8: Adjusting the placement of w so that ℓ0 and ew do not intersect

Each 2-symmetric face f of P alternates 1- and 2-symmetric edges. Each 1-symmetric
edge e of f has its representative e′ in the graph S; furthermore, two consecutive 1-symmetric
edges e1 and e2 around f have endpoints in a 2-symmetric edge of P , implying that e′1 and
e′2 have an endpoint in common (namely, the common intersection of the affine spans of e1
and e2 with ℓ0). It follows that f induces a polygon f ′ in S. It is easy to see that the union
of the polygons f ′ in S arising from 2-symmetric faces f of P conform a polyhedron Q. The
symmetries of P all preserve Q, and since the former has 3 times as many edges as the latter,
we can conclude that Q is regular. Clearly, P is a truncation of Q.

Theorem 4.14. Let P be a vertex-transitive 3-orbit polyhedron in class 31,2 in general posi-
tion with 3-valent vertices and non-planar 1-symmetric faces such that G(P) ∈ {[3, 3], [3, 4], [3, 5]}.
Then P is vt-equivalent to Tr(Q)ζ2 for some finite regular polyhedron Q.

Proof. Proposition 4.11 tells us that Pζ2 has planar 1-symmetric faces, and we may choose
the base vertex so that the convex hulls of the 1-symmetric faces do not intersect. By
Proposition 4.11, Pζ2 is a polyhedron. Since the 1-symmetric faces of P are not planar, they
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must split into two planar 1-symmetric faces of Pζ2 , none of which contains the center of
P in their convex hull. We can conclude that Pζ2 is in general position. An application of
Theorem 4.13 concludes the proof.

Combining Theorems 4.13 and 4.14 with Corollary 4.7 and Proposition 4.11 yields the
following corollary:

Corollary 4.15. The finite vertex-transitive 3-orbit polyhedra with 3-valent vertices and
irreducible symmetry group consist of:

(a) The truncations of the finite regular polyhedra,

(b) The polyhedra obtained by applying ζ2 to these truncations, and

(c) The Petrials of all of the above.

In particular, there are 72 such polyhedra.

According to [11] there are precisely 18 finite regular polyhedra in E3. In the notation of
[5] they are the 5 platonic solids {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} and the 4 Kepler-Poinsot
polyhedra {5/2, 3}, {5/2, 5}, {3, 5/2}, {5, 5/2} together with their Petrials. From Theorem
4.13 we know that there are precisely 18 polyhedra in class 31,2 in general position with
planar 1-symmetric faces and irreducible symmetry group: the truncations of the 18 finite
regular polyhedra in E2.

The truncations of the Platonic solids are Archimedean solids and are well-understood.
The truncations of {3, 5/2}, {5, 5/2} have planar faces that can be made regular for a
certain choice of base vertex, and therefore are listed in [6] with the numbers 71 and 47,
respectively. This is not the case for the truncations of {5/2, 3} and {5/2, 5}, where the 2-
symmetric faces are truncated pentagrams and are not regular for any choice of base vertex.
The 2-symmetric faces of the Petrials of the Platonic solids and Kepler-Poinsot polyhedra
are truncated skew polygons and therefore are non-planar. The truncations of these 18
polyhedra are all described in [28, Chapter 3] as the polyhedra P 0,1 listed in each subsection.

Applying ζ2 to each of the truncations transforms planar 1-symmetric faces into skew 1-
symmetric faces and vice-versa, as long as we started with a truncation in general position.
Furthermore, in all cases it returns a polyhedron. If P is a Platonic or Kepler-Poinsot solid
then the 2-symmetric faces of Tr(P) are planar and the vertices of Tr(P)ζ2 lie on two parallel
planes; each 1-symmetric edge is contained in one of these planes while 2-symmetric edges
have one endpoint in each plane. The 2-symmetric faces of the outcome of applying ζ2 to
the truncations of the Petrials of the Platonic and Kepler-Poinsot solids are also non-planar
with their vertices lying in two planes, but here every edge has one vertex in each of the
planes.

Taking truncation to each of the finite regular polyhedra preserves the symmetry group.
This is also the case when performing the ζ2 operation, with the following exception. If P
is the tetrahedron or its Petrial then Tr(P) is not centrally symmetric. Therefore Tr(P)ζ2
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has twice as many vertices; furthermore, its symmetry group acquires the central inversion
and it becomes [3, 4]. For all other choices of finite regular polyhedron P we have that
the central inversion belongs to G(P), and the replacement of all 2-symmetric edges {u, v}
and {−u,−v} of Tr(P) for {u,−v} and {−u, v} yields a connected graph. It follows that
G(P) = G(Tr(P)ζ2).

Some of the vt-equivalent realizations of the vertex-transitive 3-orbit polyhedra with 3-
valent vertices and symmetry group [3, 3] will be provided. Given the current description we
shall omit the ones with symmetry groups [3, 4] and [3, 5].

The vertex-transitive polyhedra with 3-valent vertices and symmetry group [3, 3], [3, 4],
or [3, 5] are listed in Tables 3 (in the first four rows), 6 (in the first five groups), 9, and 10.

Finally, let us note that though the polyhedra in Tables 4 and 7 are not geometric
truncations, they are combinatorially equivalent to truncated regular maps. Indeed, this
follows from [20, Thm. 5.1].

5 Full tetrahedral group

Information about [3, 3]
Description Symmetry group of a tetrahedron T
Order 24
Admissible vertex orbits 4, 6, 12

Involutions
6 plane reflections
3 half-turns whose mirrors join midpoints of edges of T

There are two kinds of subgroups of [3, 3] isomorphic to Z2 × Z2: the group consisting
of the three half-turns and the identity, and the group generated by two reflections with
perpendicular mirrors. Recall that for all classes of 3-orbit polyhedra with full tetrahedral
symmetry group, there is an orbit of edges whose edge stabilizer is of this kind.

5.1 Vertex-intransitive

Vertex-intransitive polyhedra with group [3, 3]
1-symmetric edges 6
2-symmetric edges 12
1-symmetric vertices four 3-valent
2-symmetric vertices four 6-valent or six 4-valent

We first consider 3-orbit polyhedra in class 30,1. Let P be one such polyhedron.

We first discard the possibility of P having 6 vertices that are 2-symmetric. Recall that
the points whose orbit under [3, 3] have 6 elements are in the axes of the half-turns (aligned
with the midpoints of edges of T ). An edge e between two of these vertices must be 1-
symmetric, and such an edge is invariant under a subgroup of [3, 3] with 4 elements. However,
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each reflection plane of [3, 3] contains only one axis of a half-turn in [3, 3], which implies that
the endpoints of e must belong to the same axis of a half-turn. This would imply that there
is only one 1-symmetric edge incident to a 2-symmetric vertex, contradicting Lemma 2.1.

Now we know that all 3-orbit polyhedra in class 30,1 with full tetrahedral symmetry
group have four 1-symmetric vertices, and four 2-symmetric vertices. The four vertices in
each orbit must lie on the axes of the 3-fold rotations (each determined by a vertex and the
center of the opposite triangle in T ).

Since the 2-symmetric vertices have degree 6, each such vertex v is adjacent to the other
three 2-symmetric vertices and to the three 1-symmetric vertices that are not in the same
axis as v. Up to vi-equivalence, we may assume that all vertices lie on a sphere, where
vertices in the same rotation axis are at opposite sides of the center of P . In this way we get
a graph vi-equivalet to the 1-skeleton of the convex Catalan solid called triakis tetrahedron
(see Figure 9), the dual of the truncated tetrahedron.

u

v

w

x

x

Figure 9: Triakis tetrahedron; thick black edges belong to the underlying tetrahedron

In the 1-skeleton of the triakis tetrahedron the only possible 3-symmetric faces are pre-
cisely the triangles of the triakis tetrahedron. If we assume otherwise then we must skip
either 2 or 4 edges at the 2-symmetric vertices. If u is a 1-symmetric vertex and its neigh-
bors in a face are v and w, by skipping 2 or 4 edges at v and w we reach a vertex x adjacent
by 1-symmetric edges in the same face both to v and w, preventing the face to be a polygon,
or to be be 3-symmetric (see Figure 9, where the two possibilities of x are shown). We can
conclude the following result.

Proposition 5.1. Up to similarity and vi-equivalence the triakis tetrahedron is only one
3-orbit polyhedron in class 30,1 in E3.

5.2 Vertex-transitive cases

Vertex-transitive polyhedra with group [3, 3]
1-symmetric edges 6
2-symmetric edges 12
Vertices twelve 3-valent
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The only possibility is to have twelve 3-valent vertices, and so the results in Subsection
4.3 imply the following.

Proposition 5.2. Up to similarity and vt-equivalence the only vertex-transitive 3-orbit poly-
hedra in E3 with symmetry group [3, 3] are:

• the truncated tetrahedron Tr({3, 3}) in class 31,2,

• the truncated hemicube Tr({4, 3}3) in class 31,2,

• Tr({3, 3})π in class 31,

• Tr({4, 3}3)π in class 31.

Proof. We know from Theorems 4.13 and 4.14 that every polyhedron in class 31,2 is either
the truncation of a regular polyhedron, or the image under ζ2 of that truncation. The
only regular polyhedra with symmetry group [3, 3] are the tetrahedron and the hemi-cube,
yielding the first two items in the statement. However, as noted in Subsection 4.3, when
applying ζ2 to either polyhedra in the first two items the symmetry group increases to [3, 4].
We conclude that the only polyhedra in class 31,2 are Tr({3, 3}) and Tr({4, 3}3). Corollary
4.7 is used directly to find all polyhedra in class 31 from those in class 31,2.

To conclude this section we illustrate the two essentially different kinds of realizations
of the 1-skeleton of the truncated tetrahedron (and hence of each of the vertex-transitive
3-orbit polyhedra with symmetry group [3, 3]). For sake of brevity, we shall not do the same
for the groups [3, 4] or [3, 5].

The base vertex v0 must belong to the mirror Π of some plane reflection that fixes
pointwise the 1-symmetric edge e0 containing v0. We may choose the base vertex as an
interior point of the edge of T or of the edge of the dual of T contained in Π; in these cases
the convex hull is a truncated tetrahedron (possibly with non-regular hexagons) as in Figure
10 (e). Alternatively, v0 may be chosen as an interior point in the altitude of a triangle
of T contained in Π, that does not project to an edge of the dual of T from the center of
T ; in this situation the convex hull is a cuboctahedron (possibly with rectangles instead of
squares, and with two sets of triangles of distinct sizes) as in Figure 10 (a). In both figures
T is shown in gray lines.

The 1-symmetric edges are completely determined; one such edge e is illustrated in Figure
10 (b) and (f) for each case of vertex-set. The remaining 1-symmetric edges are the images of
e of under [3, 3]; each of them is parallel to an edge of T . There are two possible choices of 2-
symmetric edges depending on the choice of the symmetry that swaps their endpoints. They
must be plane reflections, and up to conjugacy by elements in G(P) they can be chosen
between a pair of perpendicular reflection plains of [3, 3]. A triangle for the two distinct
choices is shown in Figure 10 (c), (d), (g), (h).

We summarize the enumeration in this section with the following theorem.

Theorem 5.3. There are 5 vertex-transitive 3-orbit polyhedra with symmetry group [3, 3],
summarized in Table 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Edges of the vertex-transitive 3-orbit polyhedra

6 Rotational octahedral group

Information about [3, 4]+

Description Orientation-preserving symmetries of a cube C
Order 24
Admissible vertex orbits 6, 12

Involutions
3 half-turns with mirrors parallel to the edges of C
6 half-turns with mirrors joining midpoints of opposite edges of C.

Theorem 4.2 proves that P cannot be in class 30,1, and so we will assume that P is
vertex-transitive.

Vertex-transitive polyhedra with group [3, 4]+

1-symmetric edges 6
2-symmetric edges 12
Vertices Twelve 3-valent vertices

The vertex set of P consists of the midpoints of the edges of C. The convex hull of the
vertex set is an Archimedean cuboctahedron. The 1-symmetric edges of P must be those
joining two antipodal vertices (midpoints of edges of C), since they are the only segments
between pairs of vertices that are fixed pointwise by non-trivial involutions in [3, 4]+.

To determine the 2-symmetric edges let v0 be a vertex of P and e0 be the 1-symmetric
edge joining v0 to its antipode. A 2-symmetric edge e1 at v0 must be invariant under an
involution T1 ∈ [3, 4]+ that swaps its endpoints. We claim that this involution cannot be a
half-turn about the axis of 4-fold rotations. Indeed, those half-turns only preserve segments
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between midpoints of antipodal edges of C and altitudes of squares of C, and in each of those
cases the 1-skeleton of P would be disconnected.

Among the six axes of half-turns of [3, 4]+ that are not axes of 4-fold rotations, one fixes
pointwise e0, one fixes e0 while interchanging its endpoints, and the other four are equivalent
under the stabilizer of v0 in [3, 4], and therefore yield isometric structures (in left- and right-
handed versions). Figure 11 (a) illustrates a vertex (black node) with its 1-symmetric edge
(dashed line) and the four choices of 2-symmetric edges at that vertex.

(a) (b)

Figure 11: Edges and 1-symmetric faces of the vertex-transitive 3-orbit polyhedra

The orbit under [3, 4]+ of one of the candidates of 2-symmetric edges induces four triangles
with disjoint vertex sets. The vertices of any of these triangles are the midpoints of three
disjoint edges of a Petrie path of C, and hence the center of every triangle is the center of
C. An orbit of 2-symmetric edges is illustrated in Figure 11 (b), where the triangles are in
distinct shades of gray.

The 1-skeleton of P is a connected, vertex-transitive cubic graph with girth 3 on 12
vertices. According to [22], it is isomorphic to the 1-skeleton of the truncated tetrahedron
(the only graph with those properties). The faces of P are the only possible ones in the
1-skeleton of the truncted tetrahedron, described in Proposition 5.2, with the only difference
being the way of realizing the truncated tetrahedron. We will denote this 1-skeleton by H[4,3]

and think of it as a realization of the 1-skeleton of the truncated hemi-cube; we will see later
that the polyhedra with symmetry group [3, 5]+ can similarly be described in terms of the
truncated hemi-dodecahedron and truncated hemi-icosahedron.

Theorem 6.1. There are four 3-orbit polyhedra in E3 with G(P) = [3, 4]+, summarized in
Table 4. In each case, the convex hull of the vertex set is an Archimedean cuboctahedron.

To reinforce the visualization of the faces of the polyhedra in Theorem 6.1, Figure 13
shows an Archimedean cuboctahedron with its vertices labeled. Vertices 1, 2, 3, 4 correspond
to the upper square while vertices 9, 10, 11, 12 correspond to the lower square. A sample
9-gon and a sample 12-gon of polyhedra in class 31 with symmetry group [3, 4]+ are given by
the lists of vertices (2, 7, 5, 11, 4, 10, 8, 3, 9) and (2, 7, 5, 4, 11, 1, 12, 6, 8, 10, 3, 9), respectively.
A 2-symmetric 6-gon and a 2-symmetric 8-gon of polyhedra in class 31,2 with symmetry group
[3, 4]+ are given by the lists of vertices (5, 4, 10, 3, 9, 7) and (5, 4, 10, 8, 6, 12, 2, 7), respectively.
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(a) (b) (c) (d)

Figure 12: 3-symmetric and 2-symmetric faces of 3-orbit polyhedra with symmetry group
[3, 4]+
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Figure 13: Archimedean cuboctahedron

These two last polygons can be constructed respectively from opposite triangles and opposite
squares of the cuboctahedron.

7 Full octahedral group

Information about [3, 4]
Description Symmetries of a cube C
Order 48
Admissible vertex orbits 6, 8, 12, 24

Involutions

Central inversion
3 half-turns with mirrors parallel to the edges of C
6 half-turns with mirrors joining midpoints of opposite edges of C
3 reflections in mirrors that are parallel to the faces of a cube
6 reflections in mirrors that contain pairs of opposite edges of a cube
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7.1 Class 30,1

Vertex-intransitive polyhedra with group [3, 4]
1-symmetric edges 12
2-symmetric edges 24
1-symmetric vertices six 4-valent or eight 3-valent
2-symmetric vertices six 8-valent, eight 6-valent, or twelve 4-valent

We start by determining the graph induced by the 1-symmetric edges between 2-symmetric
vertices.

If there are six 2-symmetric vertices, then each one is incident to four 2-symmetric ver-
tices. Thus the 1-symmetric edges must form the 1-skeleton of an octahedron. If there are
eight 2-symmetric vertices, each incident to three others, then the 1-symmetric edges either
form the graph of a cube or of two disjoint tetrahedra inscribed in a cube. Finally, if there
are twelve 2-symmetric vertices, each incident to two others, then the 1-symmetric edges
must belong to mirrors of plane reflections and therefore form three disjoint 4-cycles. We
split our analysis according to the three possibilities of graph induced by the 2-symmetric
vertices.

7.1.1 Octahedral graph

Our first case is when the 2-symmetric vertices induce the 1-skeleton of an octahedron. We
split into cases depending on the number of 1-symmetric vertices.

Six 1-symmetric vertices

Each 1-symmetric vertex is incident to four 2-symmetric vertices. Up to vi-equivalence,
we may consider these vertices as the centers of faces of 2C, and the stabilizer of each 1-
symmetric vertex has a single orbit of 2-symmetric vertices of size four, giving us the graph
of a cloned octahedron. We will denote the 2-symmetric vertices as 1 through 6 as in Figure
14, and the 1-symmetric vertices will be denoted 1′ through 6′, with (for example) 1′ being
adjacent to the neighbors of 1.

Now, let F be a face containing the 1-symmetric edge (2, 3). The nontrivial symmetry
of P that fixes both endpoints is a reflection in a plane through vertices 2, 3, 4, and 5.
Furthermore, this plane also contains vertices 2′, 3′, 4′, and 5′. By Lemma 2.5, a face that
starts with (2, 3) cannot continue to 2′ or 4′. Then we may assume that F starts with
(2, 3, 1′).

There are two symmetries that fix that edge while interchanging its endpoints: A reflec-
tion through the bisector of that edge, and a half-turn about a line through the center of that
edge. One of these two symmetries must fix F . If the reflection fixes F , then F must contain
the edge from 1′ to 2 in addition to the edge from 1′ to 3, and so we get triangular faces. The
vertex-figure at 2 consists of two disjoint 4-cycles; the triangles 231′, 251′, 256′, 236′ induce
one of the 4-cycles. So we do not get a polyhedron this way. Thus, we may assume that a
half-turn about the center of (2, 3) fixes F , and so F starts with (6′, 2, 3, 1′). The image of
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Figure 14: Labeling of vertices of the octahedron

this partial face under the symmetry group of P includes a face that starts (6′, 2, 5), one that
starts (1′, 2, 5), and one that starts (1′, 2, 3). So again, we get a 4-cycle in the vertex-figure
at 2, and so there are no polyhedra in this case.

Eight 1-symmetric vertices

Up to vi-equivalence, we may consider the 1-symmetric vertices to be the vertices of the
cube 0.5C. Each 1-symmetric vertex is incident to three 2-symmetric vertices. There are two
choices: we can connect each 1-symmetric vertex to the nearest three 2-symmetric vertices
or the furthest three. But these are vi-equivalent; switching every 1-symmetric vertex v with
its opposite −v induces the equivalence. Thus we will assume that the 1-symmetric vertices
are incident to the closest three 2-symmetric vertices. This gives us the 1-skeleton of a triakis
octahedron.

We keep the labeling of the 2-symmetric vertices as in Figure 14, and label the 1-
symmetric vertices as in Figure 15. In this way, 2-symmetric vertex 4 can be thought of
as the center of the square determined by the 1-symmetric vertices c, d, h, g, and hence we
assume that there is an edge from 4 to each of c, d, h and g. On the other hand, the edges
in Figure 15 are only a reference; they are not edges of the triakis octahedron.

Let F be a face containing the edge (2, 3). Up to symmetry, we may assume that the
face contains either (2, 3, b) or (2, 3, c). Suppose that the reflection through the middle of
that edge fixes F . If F contains (2, 3, b), then this reflection gives us the edge between 2 and
b, and so we get triangular faces (see Figure 16 (a)). This gives us the triakis octahedron.
If instead, F contains (2, 3, c), then it also contains the edge (2, a). Lemma 2.3 implies that
the vertices 1 and 6 cannot be part of F . Considering the orbit of the partial face (a, 2, 3, c)
under the stabilizer of a, and throwing away those pieces that contain 1, 6, or 2 (since we
have already used 2), we see that (a, 5, 4, c) must also be part of F . Thus, the faces are
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Figure 15: Labeling of 1-symmetric vertices

hexagons in the orbit of (a, 2, 3, c, 4, 5) (see Figure 16 (b)). It is straightforward to verify
that the vertex-figures are all connected, and so this yields a polyhedron.

Finally, suppose that the half-turn through the middle of (2, 3) fixes F . Note that this
half-turn does not fix any vertex, and so Remark 2.9 implies that F has an even number
of vertices. Since 2/3 of the vertices of F must be 2-symmetric, that implies that F is a
hexagon. Suppose F contains (2, 3, b). Then it also contains the edge (2, f). Then, since
b is only adjacent to vertices 1, 2, and 3, and 2 is already incident to two vertices of F , it
follows that the edge (b, 1) is in F , and then applying the half-turn we see that (f, 6) is in
F . So F must contain (6, f, 2, 3, b, 1). Since F is a hexagon, this would have to be the whole
face – however, 1 is not adjacent to 6. So the last possibility is for F to contain (2, 3, c);
applying the half-turn symmetry we get that F contains (e, 2, 3, c). Now, if F contains (c, 1)
then it also contains (e, 6), and we would get that F = (6, e, 2, 3, c, 1), which again doesn’t
work since 1 and 6 are not adjacent. The only remaining possibility is F = (5, e, 2, 3, c, 4)
(see Figure 16 (c)). This is a hexagon, the vertex-figures are connected, and so we get
a polyhedron. Note that the two polyhedra with hexagonal faces are not combinatorially
equivalent; in the first case, each 2-symmetric vertex that is not contained in a given face F
is adjacent to either 0 or 2 1-symmetric vertices of F , whereas in the second case, each such
2-symmetric vertex is adjacent to one 1-symmetric vertex of F .

We have proven the following result.

Proposition 7.1. Up to similarity and vi-equivalence there are three 3-orbit polyhedra P with
G(P) = [3, 4] and with six 2-symmetric vertices. Their 1-skeleton is the triakis octahedron.
One face of each of them is illustrated in Figure 16.

7.1.2 Eight 2-symmetric vertices

Now suppose that there are eight 2-symmetric vertices, each of degree 6. These vertices can
be understood as the vertices of C. Each vertex must be incident to three other vertices of
this type, and so the 1-symmetric edges (which connect 2-symmetric vertices) must either
form the skeleton of a cube, or else that of the stella octangula, that is, two disjoint 1-skeleta
of tetrahedra inscribed in the cube. Again we split our analysis according on the number (6
or 8) of 1-symmetric vertices.
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Figure 16: Faces of 3-orbit polyhedra in class 30,1 with six 2-symmetric vertices

Six 1-symmetric vertices

Each 1-symmetric vertex is incident to four 2-symmetric vertices. Up to vi-equivalence,
we may consider these vertices as the centers of faces of 2C, each connected to the vertices
of the corresponding face of the cube. If the graph of 1-symmetric edges is a cube, then the
full graph is the 1-skeleton of the tetrakis hexahedron. Otherwise, it can be thought as the
1-skeleton of the stella octangula where 6 vertices are added at the intersections of the edges,
together with 24 edges from these 6 vertices along halves of the original edges of the stella
octangula. We will denote the 2-symmetric vertices by 1 through 8, and the 2-symmetric
vertices will be a through f (see Figure 17), where d, e and f are opposite to b, c and a,
respectively.

Figure 17: Labeling of vertices

Let us start by assuming that the graph of 1-symmetric edges is a cube. Consider the
1-symmetric edge (1, 2), and let F be a face containing this edge. By Lemma 2.5, the next
vertex cannot be c. Then without loss of generality, the face contains (1, 2, a). If the reflection
through the bisector of (1, 2) fixes F , then that implies that F is the triangle (1, 2, a). In this
case, we get the tetrakis hexahedron. Now suppose that the half-turn at (1, 2) fixes F . Note
that this symmetry does not fix any vertices, and so F must be either a hexagon or a 12-gon.
Now, applying the half-turn to (1, 2, a) we see that F contains (b, 1, 2, a). In order for F to
be a hexagon, there would need to be adjacent numbered vertices, different from 1 and 2,
such that one of them is adjacent to a and the other to b. There is no such pair of vertices,
and so F must be a 12-gon. There are two possibilities: one where the faces “pass through”
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the lettered vertices as (b, 1, 2, a, 4, 3, d, 8, 7, f, 5, 6), and one where the faces “turn” at the
lettered vertices as (b, 1, 2, a, 3, 4, d, 8, 7, f, 6, 5). But “passing through” gives a disconnected
vertex-figure at a. The other choice gives us 12-gonal faces, while the vertex-figures at the
1-symmetric vertices are squares and those at the 2-symmetric vertices are hexagons.

Now consider the graph represented on the right in Figure 17, and the 1-symmetric edge
(1, 3). Let F be a face containing this edge. By Lemma 2.5, the next vertex cannot be a.
Without loss of generality, F contains (1, 3, c). Suppose the reflection T through the bisector
of (1, 3) fixes F . This reflection fixes vertices 2, 4, 6, and 8, and so Lemma 2.3 implies that
none of these vertices are part of F . Now, applying T to (1, 3, c) shows us that F contains
(b, 1, 3, c), and then the only possible face is (b, 1, 3, c, 7, 5). This yields connected vertex-
figures at every vertex and we get a polyhedron. Indeed, the vertex-figures at 1-symmetric
vertices are squares, whereas those at 2-symmetric vertices are prismatic skew hexagons.
Now, suppose instead that the half-turn T ′ through the center of (1, 3) fixes F . In order
to get connected vertex-figures at c, F must contain (1, 3, c, 2) or (1, 3, c, 7). In the first
case, applying T ′ gives us that F contains (4, e, 1, 3, c, 2). There must be a symmetry of
F that sends the arc (4, e) to (3, c); indeed there are two such symmetries, both of order
2: the reflection through the bisector of (3, 4) and the half-turn through a line containing
the center of (3, 4). Since these symmetries have order 2, it follows that F is the hexagon
(4, e, 1, 3, c, 2), and the symmetry of F mapping (4, e) to (3, c) is in fact the reflection. This
gives us connected vertex-figures (the same as in the case when the stabilizer of (1, 3) in
G(F ) is T instead of T ′). The second case, where F contains (1, 3, c, 7), follows similarly and
we get a polyhedron with a sample hexagonal face (5, e, 1, 3, c, 7).

Let us show that the three polyhedra just produced are all combinatorially distinct,
considering Figure 18. We can distinguish (c) from the others by noting that the two 1-
symmetric vertices of a face have two common neighbors in (c) but none in common in
Figure 18 (d) and (e). Furthermore, we can distinguish (d) from (e) by noting that the four
2-symmetric vertices of a face are all incident to a single 2-symmetric vertex in (d) but not
in (e).

Eight 1-symmetric vertices

Up to vi-equivalence, we may consider the 1-symmetric vertices to be the vertices of the
cube 1.2C. Each 1-symmetric vertex v is incident to three 2-symmetric vertices. They can be
either the ones corresponding to the neighbors of v in 1.2C, or the antipodes of the neighbors
(corresponding to vertices at distance 2 from v in 1.2C).

If the graph induced by the 2-symmetric vertices is a cube, then we use that antipodes
belong to the same axis of 3-fold rotation and therefore these two choices yield vi-equivalent
polyhedra. The 1-skeleton is isomorphic to the cloned cube. On the other hand, if the graph
induced by the 2-symmetric vertices is the union of the two tetrahedra inscribed in C then
the three edges at a given 1-symmetric vertex join it with three 2-symmetric vertices in
the same tetrahedron, and therefore the 1-skeleton becomes disconnected (the union of two
disjoint triakis tetrahedra). Hence we assume that the 1-skeleton is isomorphic to the cloned
cube.
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Figure 18: Faces of 3-orbit polyhedra in class 30,1 with eight 2-symmetric vertices

Note here that the vertex-figures should all be polygons, as long as the two neighbors of a
2-symmetric vertex on a give face belong to distinct axes of 3-fold rotation. The 1-symmetric
vertices are all 3-valent, which implies that the vertex-figures are triangles. On the other
hand, the 2-symmetric vertices are all 6-valent, which forces connectivity of the vertex-figures
because of the way the different edge orbits are arranged around a 2-symmetric vertex.

We keep the labeling of 2-symmetric vertices as in the left of Figure 17; then the 1-
symmetric vertex cloned to vertex j is called j′. Let F be a face containing the edge (1, 2).
By Lemma 2.5, since the reflection through the plane containing vertices 1, 2, 7, and 8 also
fixes 1′, the next vertex after 2 cannot be 1′. Then without loss of generality, F contains
(1, 2, 3′). If the reflection that interchanges 1 and 2 is a symmetry of F , then F contains
(4′, 1, 2, 3′). Since this reflection does not fix any vertex, Remark 2.9 implies that F has an
even number of sides. If F is a 12-gon, then the 1-symmetric edges of F consist of four
disjoint edges in the orbit of (1, 2) under a cyclic subgroup of the symmetry group. The only
such orbits are induced by either a quarter-turn about the center of the face (2, 3, 6, 7) of
the cube, or a 4-fold rotatory reflection. In all cases the image of the partial face (4′, 1, 2, 3′)
under the subgroup is disconnected. So F must be a hexagon. Then there must be a
symmetry of F that fixes 3′ and 4′ while sending (1, 2) to the other 1-symmetric edge of F ;
this must be the plane reflection through 3′, 4′, 5′, and 6′, which sends (1, 2) to (7, 8). Thus
F = (4′, 1, 2, 3′, 7, 8).

If the half-turn is what fixes F while interchanging 1 and 2, then again Remark 2.9 implies
that F has an even number of sides, and now F contains (5′, 1, 2, 3′). An argument similar
to the above shows that F cannot be a 12-gon. The only hexagon that contains (5′, 1, 2, 3′)
and is stabilized by the half-turn is (5′, 1, 2, 3′, 7, 8).
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To see that the two polyhedra we obtain are combinatorially distinct, consider all of the
neighbors of the 1-symmetric vertices of a face. In the first type of face, the remaining two
2-symmetric vertices are adjacent, but in the second type they are not.

The polyhedra found in this case are enumerated in the following proposition.

Proposition 7.2. Up to similarity and vi-equivalence there are seven 3-orbit polyhedra P in
class 30,1 with G(P) = [3, 4] with eight 2-symmetric vertices. Two of them have the tetrakis
hexahedron as their 1-skeleton, and three have as 1-skeleton the graph represented on the
right of Figure 17. Figure 18 shows in gray sample faces of each of these five polyhedra. The
remaining two polyhedra have the cloned cube as their 1-skeleton and a sample face for each
polyhedron is shown in Figure 19, where the edges incident to the 1-symmetric vertices are
omitted if they are not part of the face.

(a) (b)

Figure 19: Faces of 3-orbit polyhedra in class 30,1 with a cloned cube as 1-skeleton

7.1.3 Twelve 2-symmetric vertices

Finally, suppose that there are twelve 2-symmetric vertices, each of degree 4. These vertices
can be understood as the midpoints of edges of C and we label them as in Figure 20. Each
vertex must be incident to two other vertices of this type, and so the 1-symmetric edges
(which connect 2-symmetric vertices) form three disjoint 4 cycles. We split the analysis on
whether there are six or eight 1-symmetric vertices.

Six 1-symmetric vertices We assume that the 1-symmetric vertices are the centers
of the squares of C, labeled as in Figure 20, with vertices 4, 5 and 6 opposite to 2, 3 and
1, respectively. Up to vi-equivalence, there are two graphs: we can either connect each 1-
symmetric vertex with the edge midpoints of the same face, or with the midpoints of the
edges that are orthogonal to the face.

In the first case, consider the 1-symmetric edge (e, f). The 1-symmetric vertices that
are adjacent to f are 2 and 3, both of which are fixed by the plane reflection through e, f ,
and g. Then Lemma 2.5 implies that this graph is impossible for a 1-skeleton of a 3-orbit
polyhedron.
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Figure 20: Labels of the twelve 2-symmetric vertices

In the second case, we get a disconnected graph. For example, one of the connected
components consists of vertices 1 and 6 along with e, f , g, and h. In any case, we do not
get a polyhedron with this vertex set.

Eight 1-symmetric vertices Now the 1-symmetric vertices are assumed to be the
vertices of C, labeled as in Figure 17. We must connect the eight 1-symmetric vertices each
to three 2-symmetric vertices. Up to vi-equivalence, the only choice is to connect each vertex
of the cube to the midpoints of the incident edges, since the remaining 2-symmetric vertices
are in an orbit of size 6 under the stabilizer in [3, 4] of the given 1-symmetric vertex. We
will denote this 1-skeleton by C.

The 1-symmetric vertices are 3-valent, and hence their vertex-figures are triangles. On
the other hand, the vertex-figure of a 2-symmetric vertex is a quadrilateral, since the two
edges incident to it on a face do not belong to the same reflection plane of [3, 4] (one edge
is 1-symmetric and the other is 2-symmetric). Therefore, any 3-symmetric polygon in this
graph is a face of a polyhedron in class 30,1.

Without loss of generality, a face F containing (e, f) contains (e, f, 2). Suppose that the
symmetry that fixes F and (e, f) while interchanging e and f is the reflection through a, c,
and i. Then by Lemma 2.3, F does not contain a, and so the face must continue to b. In
this case, the face must be the hexagon (e, f, 2, b, d, 1).

Now, if the symmetry that fixes F and (e, f) while interchanging e and f is a half-turn,
then since this half-turn fixes no vertices, Remark 2.9 implies that F has even length. Since
F contains (e, f, 2), it must also contain the vertex 5, and then the only way to get a hexagon
is with (e, f, 2, a, i, 5). If F is a 12-gon, then its set of 1-symmetric edges must be the orbit
under a cyclic subgroup of order 4 of (e, f) that contains four disjoint edges. There is only
one such orbit; namely (e, f), (d, b), (g, h), and (j, l). The only possible face that contains
these and (5, e, f, 2) is the face (5, e, f, 2, b, d, 4, h, g, 7, j, l). Finally, if F is an 18-gon, then
the 1-symmetric edge of F that follows (e, f) must be the image of (e, f) under a rotatory
reflection of order 6. In that situation the symmetries stabilizing 1-symmetric vertices while
swapping their endpoints should be half-turns, and the conjugation by any such half-turn
should invert the rotatory reflection. However, conjugation by a half-turn whose axis contains
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centers of two opposite squares does not invert any of the four 6-fold rotatory reflections in
[3, 4], and hence faces cannot have 18 vertices.

Note that the two polyhedra with hexagonal faces can be distinguished by considering
whether the 1-symmetric vertices of a face have a common neighbor or not.

The polyhedra with twelve 2-symmetric vertices are enumerated in the next result.

Proposition 7.3. Up to similarity and vi-equivalence there are three 3-orbit polyhedra P in
class 30,1 with Γ(P) = [3, 4] and twelve 2-symmetric vertices. The 1-skeleton is that of the
cube with subdivided edges on their halves, and both altitudes of each square, denoted C. A
sample face for each polyhedron is shown in Figure 21.
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Figure 21: Faces of 3-orbit polyhedra in class 30,1 with twelve 2-symmetric vertices

Let us summarize.

Theorem 7.4. Up to similarity and vi-equivalence, there are thirteen vertex-intransitive
3-orbit polyhedra with symmetry group [3, 4], summarized in Table 5.

7.2 Vertex-transitive

Vertex-transitive polyhedra with group [3, 4]
1-symmetric edges 12
2-symmetric edges 24
Vertices twelve 6-valent or twenty-four 3-valent

If there are 24 vertices, then the stabilizer of each of them is generated by a plane
reflection. Applying the results in Subsection 4.3 we obtain the following theorem. Recall
that if the symmetry group of P is [3, 3] then that of Pζ2 must be [3, 4].

Proposition 7.5. Up to similarity and vt-equivalence there are 20 vertex-transitive 3-valent
3-orbit polyhedra in E3 with symmetry group [3, 4]:

• the truncations of the cube {4, 3}, of the octahedron {3, 4}, of {4, 3}π and of {3, 4}π,
all in class 31,2;
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• Tr({4, 3})ζ2, Tr({3, 4})ζ2, Tr({4, 3}π)ζ2, Tr({3, 4}π)ζ2, all in class 31,2;

• Tr({3, 3})ζ2, Tr({4, 3}3)ζ2, both having as 1-skeleton that of Tr({4, 3}ζ) and both in
class 31,2;

• the Petrials of each polyhedron in the previous items, all in class 31.

For the remainder of the subsection we assume that there are 12 vertices, each lying on
exactly one of the axes of half-turns about edge midpoints. These are the vertices of an
Archimedean cuboctahedron CO. The twelve 1-symmetric edges must correspond to diag-
onals of squares of the cuboctahedron. The twenty-four 2-symmetric edges either coincide
with the edges of the cuboctahedron, or they connect each vertex to the antipodes of its
neighbors in the cuboctahedron. Thus we obtain two possible 1-skeleta, and the operation
ζ2 carries one to the other. As graphs, these are isomorphic, (verified in Sage [27]), although
the isomorphism is not induced by ζ2 and we find it easier to relate the polyhedra with each
skeleton via ζ2 rather than the abstract graph isomorphism. For convenience, we shall refer
the edges in the orbit of size 24 as ‘the edges of CO’, but bear in mind that they may or
may not be the orbit of edges of the convex hull of the vertex set. The edges of CO are
solid, while those in the orbit with 12 elements are dashed in Figure 22. We will denote the
1-skeleton containing the edges of the convex cuboctahedron as CO.

Figure 22: The graph of CO. The solid edges are one edge orbit (also referred as ‘edges of
CO’, and the dashed edges are another edge orbit. The top dashed edge is the same as the
bottom one, and the left and right dashed edges are the same.

To describe the 3-symmetric faces in both possibilities of 1-skeleton, we will use the graph
in Figure 22. Since ζ2 fixes the size and type of 3-symmetric face, this presents no difficulty
when classifying the polyhedra with 1-skeleton COζ2 . In order to describe the 1-symmetric
and 2-symmetric faces, we shall illustrate their images in the projective plane. With this
understanding, the way the 2-symmetric edges lift depends completely on whether the 1-
skeleton includes the edges of the cuboctahedron or not. The two possibilities for the lifts of
the 1-symmetric edges must be considered; frequently one of them yields polygons whereas
the other does not.

First we consider the face-transitive case (class 31).
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Each face must use two solid edges in a row, followed by a dashed edge, two solid edges,
etc. To specify the type of faces, it is enough to specify how many edges are skipped after
traversing each edge on a given face F . Whenever two consecutive solid edges of F are two
edges of the same square of CO, then we get disconnected vertex-figures (pairs of triangles
whether a consecutive pair of solid and dashed edge of F are consecutive around a common
vertex or not). Any other configuration of solid-solid and solid-dashed in F yields connected
vertex-figures, producing four possible types of faces: See Figure 23. These four cases can
also be derived by thinking CO as a convex cuboctahedron, noting that each choice (out of
2 possibilities) of consecutive solid edges together with each choice of dashed edges (also out
of 2 possibilities) completely determines the non-trivial symmetry of F that fixes the vertex
between two given consecutive dashed edges, as well as the non-trivial symmetry fixing a
given dashed edge.

(a) (b)

(c) (d)

Figure 23: The four possible face-types for vertex-transitive, face-transitive 3-orbit polyhedra
with 12 vertices and symmetry group [3, 4], visualized on the sphere.

These polyhedra are all distinct as abstract polyhedra. In the first but not the second,
every pair of adjacent edges of a face can be completed to a triangle in the graph. The third
has a triangle of red vertices whereas the fourth does not. We note that though the last
two polyhedra are equivelar of type {6, 6}, there is no abstract regular polyhedron of type
{6, 6} with 36 edges (see for example [14]). The first two are also not regular; the two faces
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meeting at a dashed edge share every third edge, whereas those meeting at a solid edge do
not.

Now let us consider the face-intransitive polyhedra (in class 31,2).

The argument used to discard two consecutive solid edges of a square of CO in a face
works here as well. In the remaining choices the vertex-figures are connected. One type of
face uses only solid edges. If the 1-skeleton is CO, when we skip no edges we get triangles,
and when we skip two edges, we get hexagons, as shown in Figure 24(a) and (b). The
other type of face alternates edge types; a careful analysis gives us only 3 possible faces (see
Figure 24(c), (d), and (e)). For clarity, Figure 25 also shows the face in Figure 24(e) but
visualized on the sphere. Each combination of 1-symmetric and 2-symmetric face yields a
polyhedron.

(a) (b)

(c) (d) (e)

Figure 24: The possible faces for a 3-orbit polyhedron in class 31,2 with 12 vertices and
symmetry group [3, 4], visualized in the projective plane. Above: The possible 1-symmetric
faces. Below: The possible 2-symmetric faces.

Two polyhedra with the same kind of vertex-figure, but distinct kind of 4-gonal faces
are non-isomorphic, since in the second kind of square there is a common neighbor of all
vertices, but this does not occur in the first kind of square.

The details about the polyhedra with 1-skeleton COζ2 follow similarly to those where the
1-skeleton is CO.

We summarize the discussion above in the following result.
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Figure 25: One possible 2-symmetric face for a 3-orbit polyhedron in class 31,2 with 12
vertices and symmetry group [3, 4], visualized on a sphere.

Proposition 7.6. Up to similarity there are 20 vertex-transitive 6-valent 3-orbit polyhedra in
E3 with symmetry group [3, 4]. The 1-skeleton CO of 10 of them is that of the cuboctahedron
together with the two diagonals of every square; the 1-skeleton of the remaining 10 is the
image of CO under ζ2 (the 2-symmetric edges are those of the cuboctahedron). Four polyhedra
with each 1-skeleton are in class 31; a sample face of each with CO as 1-skeleton is shown
in Figure 23. The remaining 12 are in class 31,2; the 1-symmetric and 2-symmetric faces of
those with CO as 1-skeleton are shown in Figure 24.

Propositions 7.5 and 7.6 are summarized in the following result.

Theorem 7.7. Up to similarity and vt-equivalence, there are 40 vertex-transitive 3-orbit
polyhedra with symmetry group [3, 4], summarized in Table 6.

8 Rotational icosahedral group

Information about [3, 5]+

Description Orientation-preserving symmetry group of a dodecahedron D
Order 60
Admissible vertex orbits 30
Involutions 15 half-turns with mirrors that join midpoints of opposite edges of D

By Theorem 4.2, P cannot be in class 30,1, and so we will assume that P is vertex-
transitive.

Vertex-transitive polyhedra with group [3, 5]+

1-symmetric edges 15
2-symmetric edges 30
Vertices thirty 3-valent
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As in the situation when the symmetry group was [3, 4]+, the 1-symmetric edges must
join a vertex with its antipode, since these are the only line segments between vertices of P
that are fixed pointwise by an involution in [3, 5]+.

The 2-symmetric edges of P must be stabilized by involutions that swap their endpoints.
Such involutions must be half-turns. Given a vertex v0 of P there are two half-turns in [3, 5]+

that map it to its antipode and one that fixes it. The remaining 12 half-turns are divided
into three conjugacy classes under the stabilizer of v0 in [3, 5]. When constructing an edge
with endpoints in v0 and its image under a half-turn, two distinct choices of half-turns in
the same class yield isometric collections of orbits of line segments under [3, 5]+, in a left-
and right-handed version. Therefore there are three essentially distinct possibilities for the
2-symmetric edges of P . In Figure 26 (a) the square represents v0, while the black dots are
midpoints of edges in the intersections of the axes of representatives of the three classes of
half-turns with D. The corresponding 2-symmetric edges are illustrated in Figure 26 (b) in
solid lines, whereas the dashed line indicates the 1-symmetric edge at v0.

(a) (b)

Figure 26: Kinds of edges of vertex-transitive 3-orbit polyhedra with symmetry group iso-
morphic to [3, 5]+

Since the vertices of P are trivalent, the 2-symmetric edges of P form cycles. For one of
the choices of half-turns stabilizing a 2-symmetric edge these cycles are triangles; one such
triangle is shown in Figure 27 (a). For the remaining two choices of half-turns the cycles are
pentagons; their vertices are the midpoints of every other edge in the same Petrie path of D.
One such pentagon is convex (see Figure 27 (b)) whereas the other one is star-shaped (see
Figure 27 (c)). Note that the centers of all these polygons coincide with the center of D.

It is possible to verify directly that if the 2-symmetric edges of P induce triangles then
the 1-skeleton of P is isomorphic to the truncated hemi-dodecahedron, whereas if these edges
induce pentagons then the 1-skeleton of P is isomorphic to the truncated hemi-icosahedron.
These two graphs can be obtained by identifying antipodes of the 1-skeletons of the truncated
dodecahedron and the truncated icosahedron, respectively. These two graphs are shown in
Figure 28 embedded in the projective plane (antipodes of the dotted circle are identified).
The thick black lines represent the 1-symmetric edges, whereas the 2-symmetric ones are
shown as thin gray segments.

Alternatively, the isomorphism of the 1-skeleton of P with the 1-skeleton of the truncated
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(a) (b) (c)

Figure 27: Polygons of 2-symmetric edges of vertex-transitive 3-orbit polyhedra with sym-
metry group isomorphic to [3, 5]+

hemi-dodecahedron or truncated hemi-icosahedron can be verified by noting that the girth
of the 1-skeleton must be 3 if the 2-symmetric edges form triangles, and 5 if these edges form
pentagons (note that the two antipodes of the endpoints of an edge cannot be joined by an
edge since [3, 5]+ does not contain the central inversion). According to [22], there is only
one connected vertex-transitive cubic graph with 30 vertices and girth k for each k ∈ {3, 5};
these two graphs cannot be other than the 1-skeleton of the truncated hemi-dodecahedron
and that of the truncated hemi-icosahedron.

Note the similarity to what happened when the symmetry group was [3, 4]+; it was also
the case there that the only possible 1-skeleton was isomorphic to the 1-skeleton of the
truncated hemi-cube. It is not clear to us if there is a deeper reason for this coincidence. In
particular, we cannot find a suitable geometric reason why this must be the case.

Figure 28: The truncated hemi-dodecahedron and the truncated hemi-icosahedron

The 1-skeleton of the truncated hemi-dodecahedron has 120 automorphisms. they are
the 60 automorphisms of the truncated hemi-dodecahedron as a map on the projective plane,
together with other 60 automorphisms that transform the contractible 10-gons into essential
10-gons. The two kind of 10-gons correspond to the pentagons and Petrie paths of the
hemi-dodecahedron. On the other hand, the 1-skeleton of the truncated hemi-icosahedron
has 60 automorphisms; these correspond precisely to the automorphisms of the truncated
hemi-icosahedron as a map on the projective plane.
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Once that we know the geometry and combinatorics of the possible 1-skeleta of P , it
only remains to describe its faces. The 1-symmetric faces must be the triangles or pentagons
shown in thin lines in Figure 28; the possibilities for 2-symmetric and 3-symmetric faces are
described next.

The 2-symmetric polygons of the truncated hemi-dodecahedron are necessarily 10-gons.
However, their boundaries (as maps on the projective plane) may be inessential or essential,
like those in Figure 29 (a), (b). The 2-symmetric polygons of the truncated hemi-icosahedron
may be inessential hexagons or essential decagons. Figure 30 shows the 3-symmetric faces in
the 1-skeleta of the truncated hemi-dodecahedron and truncated hemi-icosahedron. In the
first case they are 15-gons, and in the second they may be either 15-gons or 9-gons.

(a) (b) (c) (d)

Figure 29: 2-symmetric faces

(a) (b) (c) (d)

Figure 30: 3-symmetric faces

We have shown that for each symmetry type of vertex-transitive 3-orbit polyhedra there
are three possible 1-skeleta, and for each choice of 1-skeleton there are two distinct choices
of 2- or 3-symmetric faces. This yields 6 polyhedra in class 31 and 6 more in class 31,2.

Three consecutive edges of a polygon of each of the 6 polyhedra in class 31 are shown in
Figure 31, where thin edges are 1-symmetric and fat edges are 2-symmetric. Figures (a) to
(d) represent edges of 15-gons; the remaining edges of each polygon are obtained by rotating
the 3 edges around the axis between the centers joining the front and back pentagons. Figures
(e) and (f) represent edges of 9-gons; the remaining edges of each polygon are obtained by
rotating the 3 edges around the axis between the fat vertex and its antipode.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 31: Three edges of four 3-symmetric 15-gons and two 3-symmetric 9-gons of polyhedra
with symmetry group [3, 5]+

Now consider the 6 polyhedra in class 31,2. The 2-symmetric faces of four of them are
10-gons, whereas the remaining two have hexagonal 2-symmetric faces. Two consecutive
edges of three of the 10-gons are illustrated in Figure 32 (a), (b), (c); the remaining edges
can be recovered through the 5-fold rotation around the axis joining the centers of the front
and back pentagons. The remaining 10-gon is shown in (d). The two hexagons are those in
(e) and (f), where the fat vertex indicates the axis of 3-fold rotation. In all cases, fat edges
are 2-symmetric and thin edges are 1-symmetric.

Theorem 8.1. Up to similarity there are twelve 3-orbit polyhedra in E3 with G(P) = [3, 5]+,
summarized in Table 7. Each polyhedron occurs in a left-handed and right-handed form. In
all cases the convex hull of their vertex sets is an Archimedean icosidodecahedron.

9 Full icosahedral group

Information about [3, 5]
Description Symmetry group of a dodecahedron D
Order 120
Admissible vertex orbits 12, 20, 30, 60

Involutions
Central inversion
15 plane reflections
15 half-turns with mirrors that join midpoints of opposite edges of D
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Figure 32: Two edges of three 2-symmetric 10-gons, one 10-gon and two 6-gons of polyhedra
with symmetry group [3, 5]+

9.1 Class 30,1

Vertex-intransitive polyhedra with group [3, 5]
1-symmetric edges 30
2-symmetric edges 60
1-symmetric vertices twelve 5-valent or twenty 3-valent
2-symmetric vertices twelve 10-valent, twenty 6-valent, or thirty 4-valent

We first consider 3-orbit polyhedra in class 30,1. Let P be one such polyhedron.

The 1-symmetric vertices either lie on the 6 axes of 5-fold rotations or on the 10 axes of
3-fold rotations; in both cases, there are two vertices in each axis.

There cannot be thirty 2-symmetric vertices, lying on the axes of 2-fold rotations, since
in that case only the line segments between antipodal vertices would be invariant under
a subgroup of [3, 5] with four elements. Then there would be only one 1-symmetric edge
incident to each 2-symmetric vertex, contradicting Lemma 2.1. Therefore the 2-symmetric
vertices are either 10-valent (12 of them) or 6-valent (20 of them).

9.1.1 2-symmetric vertices on 5-fold axes

We first consider the case when the 2-symmetric vertices lie on the axes of 5-fold rotations
of [3, 5]. In this case we may think that they are the centers of the faces of D. Five of the
ten neighbours of each of these vertices are also 2-symmetric. These five neighbours must
form an orbit under the action of the stabilizer in [3, 5] of the vertex. It follows that there
are exactly two possible choices of 1-symmetric edges of P , and the graph embedded in E3

induced by the 2-symmetric vertices is isometric to the 1-skeleton of either an icosahedron
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{3, 5}, or a great icosahedron {3, 5/2}. These are isomorphic as graphs, so for the moment
we will assume that the graph is embedded as the 1-skeleton of an icosahedron.

For convenience, we label the vertices of an icosahedron as in the left of Figure 33.

1 2

34

5

6

7 8

9

10

1112

v

u

t s

r

q

p

n

m

k

j

i

h g

f

e

d c

b

a

Figure 33: Labels of the vertices and faces of an icosahedron

If the 1-symmetric vertices lie on the axes of k-fold rotations of [3, 5] then they are k-
valent and are the vertices of a dodecahedron if k = 3, and of an icosahedron if k = 5. In
either situation the neighbors of a 1-symmetric vertex v are an orbit under the stabilizer
of v in [3, 5]. If k = 5 there are two such choices, but they yield vi-equivalent polyhedra.
Hence, we may assume that v is adjacent to the five 2-symmetric vertices adjacent to the
2-symmetric vertex in the same ray as v from the center of D. In that case we shall still
use the numbers at the left of Figure 33 for 1-symmetric vertices, but with a prime. On
the other hand, if k = 3 we shall locate the 1-symmetric vertices at the centers of the faces
of the icosahedron induced by the 2-symmetric vertices, and use the labels in the center
of Figure 33 for the centers of the front faces, and those in the right of the same figure
for the centers of the faces at the back. In that situation there are four choices, yielding
two non-equivalent polyhedra: one has as 1-skeleton that of the triakis icosahedron, K[3,5],
while the other has the graph M[3,5] obtained from the icosahedron by adding 20 trivalent
vertices at the centers of the triangles, together with the 60 edges in the orbit of {a, 4} under
[3, 5]. (The ‘M ’ here stands for ‘modified Kleetope’; since the construction is similar to the
ordinary Kleetope construction.) A given 1-symmetric vertex is connected to the vertices of
a large equilateral triangle like the one shown in Figure 34 (a). In other words, it suffices
to find all polyhedra in class 30,1 in the 1-skeleton of the triakis icosahedron K[3,5] and in
M[3,5] if k = 3, and in the cloned 1-skeleton of the icosahedron Cl[3,5] if k = 5. Each such
polyhedron will have two realizations up to vi-equivalence; one where the 1-symmetric edges
are those of an icosahedron and one where they are those of a great icosahedron.

Let us remark on the effect that ζ1 has on the 1-skeleta. For each 1-skeleton, ζ1 changes
the 1-symmetric edges from the edges of an icosahedron to those of a great icosahedron, and
vice-versa. Applying ζ1 to Cl[3,5] yields an isomorphic graph that can be understood as a
cloned great icosahedron Cl[3,5/2]. Applying ζ1 to K[3,5] yields a 1-skeleton that is isomorphic
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(a) (b)

Figure 34: 1-symmetric vertex of P

as a graph to M[3,5]; we will call the result M[3,5/2] since it is obtained from the 1-skeleton
of {3, 5/2} in the same way as M[3,5] is obtained from the 1-skeleton of {3, 5}. Similarly,
applying ζ1 to M[3,5] yields a 1-skeleton that is isomorphic as a graph to K[3,5] and which we
will call K[3,5/2]. Thus we see that, for example, polyhedra with 1-skeleton K[3,5] also have a

realization with 1-skeleton M ζ1
[3,5] = K[3,5/2].

Recall that 3-symmetric faces have two non-equivalent automorphisms acting like reflec-
tions. Those preserving a vertex v must be plane reflections, since they must fix the center
of the polyhedron, the vertex v, and the midpoint between the two neighbors v in that face.
(Note that in the current circumstances those three points cannot be collinear.) On the
other hand, those preserving a 1-symmetric edge while interchanging its endpoints may be
plane reflections or half-turns. Let f0 be a face of P , let T1 ∈ G(P) fixing f0 and a vertex v0
of f0, and let T2 ∈ G(P) fixing an edge e0 while interchanging its endpoints. Assume that
v0 is adjacent to a vertex of e0 so that T1 and T2 generate the stabilizer of f0.

The automorphism T1T2 is Id or a rotation if T2 is a plane reflection, and a rotatory
reflection if T2 is a half-turn.

Lemma 9.1. The symmetry T1T2 is either the identity, a rotation of order 2 or a rotatory
reflection of order 2.

Proof. Assume to the contrary that T1T2 is none of the symmetries in the statement. The
above argumentation shows that T1T2 is either a rotation of order k or a rotatory reflection
of order 2k, for some k ∈ {3, 5}. In the first case the face f0 invariant under T1 and T2 has k
vertices that are 1-symmetric and therefore it must have 2k vertices that are 2-symmetric;
furthermore, the 2-symmetric vertices are all in some plane perpendicular to the axis of
T1T2. However there are no sets with 6 or 10 vertices of an icosahedron in the same plane
perpendicular to a rotation axis, yielding the desired contradiction.

On the other hand, if T1T2 is a rotatory reflection then f0 must have 2k vertices that are
1-symmetric and 4k vertices that are 2-symmetric. In this situation the 2-symmetric vertices
must be arranged in two parallel planes, and the contradiction arises again from the fact
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that there should be either 6 or 10 vertices of an icosahedron in the same plane, but that
does not happen.

Figure 35: 3-symmetric 6-gons

If T1T2 is a half-turn or the central inversion then f0 is a hexagon (of type 6r or 6rh,
respectively) and its 1-symmetric edges are antipodes of each other. (For the case of the
half-turn, observe that the axis ℓ is the intersection of the mirrors of T1 and T2, so that all
2-symmetric vertices are in a plane perpendicular to ℓ.) There is no such hexagon if the
1-skeleton of P is K[3,5], but there are two kinds if it is Cl[3,5] and two kinds if it is M[3,5].
A sample hexagon of each kind with the labels of vertices given in Figure 33 is illustrated
in Figure 35; (a) and (b) correspond to hexagons in Cl[3,5] while (c) and (d) are in M[3,5].
(Note here that two 2-symmetric vertices ofM[3,5] have either 2 or none common 1-symmetric
neighbours.) In each case, one of these two kinds is invariant under two plane reflections
and the other is invariant under one plane reflection and a half-turn. In all four cases the
vertex-figures are polygons.

We claim that the four choices of P with hexagonal faces are mutually non-isomorphic
(combinatorially). Those with M[3,5] as 1-skeleton have 3-valent 1-symmetric vertices while
the other two have 5-valent 1-symmetric vertices. Furthermore, if the 1-skeleton of P is
Cl[3,5] and the faces are invariant only under plane reflections (Figure 35 (b)) then the two
1-symmetric vertices of a face have a common neighbour, while if the faces are invariant
under a plane reflection and a half-turn (Figure 35 (a)) then the 1-symmetric vertices are
at distance 3 in the 1-skeleton. On the other hand, if the 1-skeleton of P is M[3,5] and f0 is
invariant under a plane reflection and a half-turn (Figure 35 (c)) then the neighbors of the
1-symmetric vertices of f0 that are not in f0 are antipodes in the icosahedron (and so they
have no common neighbor) whereas if f0 is invariant under two plane reflection (Figure 35
(d)) these neighbors have common neighbors among the vertices of the icosahedron.

Finally, if T1T2 is the identity then the faces of P are all the triangles consisting of two 2-
symmetric edges and one 1-symmetric edge. There are no such triangles if the 1-skeleton of P
isM[3,5]; a triangle for each of the other candidate 1-skeleta is shown in black in Figure 36 with
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the notation in Figure 33. If the 1-skeleton of P isK[3,5] then P is combinatorially isomorphic
to the triakis icosahedron. Otherwise, the 1-skeleton is Cl[3,5] and P is combinatorially a
triple cover of the icosahedron, still with polygonal vertex-figures.

Figure 36: 3-symmetric triangles

For most of the polyhedra we obtain with a given 1-skeleton, applying ζ1 to the polyhedron
will give another polyhedron with the transformed 1-skeleton. Let us see why this does not
always work. Let f0 be a face of P with symmetries T1 and T2 as above. Consider a face
f ′
0 of Pζ1 that shares the fixed point of T1 with f0. Then there are symmetries T ′

1 and T ′
2 of

f ′
0 that act analogously to T1 and T2. In particular, T ′

1 is again a plane reflection. Now, T2

switched the endpoints of some edge {u, v} in P , so the analogous symmetry T ′
2 must switch

the endpoints of an edge {u,−v}. It follows that T ′
2 is the composition of T2 with the central

inversion. Therefore, T ′
1T

′
2 is the composition of T1T2 with the central inversion.

Now, T ′
1T

′
2 is the identity (resp. the central inversion) if and only if T1T2 is the central

inversion (resp. the identity). Thus ζ1 works to interchange triangular faces with faces 6rh.
But if T1T2 is a half-turn, then T ′

1T
′
2 is a plane reflection, which is impossible. So, for example,

applying ζ1 to the two polyhedra with 1-skeleton M[3,5] only produces one polyhedron with
1-skeleton K[3,5/2]. Indeed, applying ζ1 to the polyhedron with faces as in Figure 35(d)
transforms the face (9, d, 7, 5, a, 6) to the walk (9, d, 7, 9, k, 7) which is not a polygon.

The enumeration of the polyhedra discussed so far in this section is summarized next.

Proposition 9.2. Up to similarity and vi-equivalence there are twelve 3-orbit polyhedra P in
class 30,1 with Γ(P) = [3, 5] where the 2-symmetric vertices are those of an icosahedron. The
graph induced by the 2-symmetric vertices in six of them is the 1-skeleton of the icosahedron,
and in the other six is the 1-skeleton of a great icosahedron.

The 1-skeleta of these 12 polyhedra are isomorphic to the triakis icosahedron, the graph
M[3,5] defined above, and the cloned icosahedron. Geometrically, there is one with each of the
1-skeleta K[3,5] and K[3,5/2], two with each of the 1-skeleta M[3,5] and M[3,5/2], and three with
each of the 1-skeleta Cl[3,5] and Cl[3,5/2].

9.1.2 2-symmetric vertices on 3-fold axes

We move on to the case when the 2-symmetric vertices lie on the axes of 3-fold rotations of
[3, 5], and we may assume that they are precisely the vertices of D. Three of the neighbors
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of a 2-symmetric vertex v must be 2-symmetric, and must correspond to an orbit of vertices
under the stabilizer of v in [3, 5]. The only two possibilities are that the three 2-symmetric
neighbors of v in P are the three neighbors of v in D, or that they are the antipodes of
the neighbors of v in D. It follows that the subgraph of the 1-skeleton of P induced by
the 2-symmetric vertices is the 1-skeleton of either a dodecahedron, or a great stellated
dodecahedron. These two are isomorphic as graphs, and for now we will assume that the
1-skeleton is a dodecahedron. We label the vertices of the dodecahedron as in the left of
Figure 37.
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Figure 37: Labels of the vertices and faces of a dodecahedron

Once again, the 1-symmetric vertices lie on the axes of k-fold rotations of [3, 5] for k ∈
{3, 5}. If k = 3 then they are trivalent and are the vertices of a dodecahedron, while if k = 5
they are 5-valent and are the vertices of an icosahedron. For the case where k = 3 we label
the 1-symmetric and 2-symmetric vertices in the same ray from the center of P with the
same letter, just distinguishing them by adding a prime to the 1-symmetric vertices. When
considering the case where k = 5 we label the 1-symmetric vertices as in the center and right
of Figure 37.

For the case k = 3 there are two vertex orbits of D of size 3 under the stabilizer of
a 1-symmetric vertex, and this indicates two choices of neighbors of a 1-symmetric vertex.
However, these two choices are antipodal to each other and they yield vi-equivalent polyhe-
dra, where the 1-skeleton is the cloned dodecahedron Cl[5,3]. On the other hand, if k = 5
then there are four vertex orbits of D of size 5 under the stabilizer in [3, 5] of a 1-symmetric
vertex. These give two possible 1-skeleta for P up to vi-equivalence: one is the 1-skeleton
of the pentakis dodecahedron, denoted K[5,3], and the other is the 1-skeleton M[5,3] obtained
from the 1-skeleton of the dodecahedron by adding 12 pentavalent vertices connected to the
vertices of the large pentagons like the one shown in Figure 34 (b). Hence, to describe all
polyhedra in class 30,1 with full icosahedral symmetry group it suffices to find all polyhedra
in class 30,1 with 1-skeleton Cl[5,3], K[5,3], and M[5,3]. Each such polyhedron will have two
realizations up to vi-equivalence; one where the 1-symmetric edges are those of a dodecahe-
dron and one where they are those of a great stellated dodecahedron. Indeed, the 1-skeleta
where the 1-symmetric edges are those of a great stellated dodecahedron can be thought of
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as Cl[5/2,3], K[5/2,3], and M[5/2,3], which as graphs are isomorphic to Cl[5,3], K[5,3], and M[5,3],

respectively. These two triples of graphs are related by the operation ζ1 so that Clζ1[5,3], K
ζ1
[5,3],

and M ζ1
[5,3] are isomorphic to Cl[5/2,3], M[5/2,3] and K[5/2,3], respectively. It follows that any

polyhedron with 1-skeleton Cl[5,3] (resp. K[5,3], M[5,3]) has another realization with 1-skeleton
Cl[5/2,3] (resp. M[5/2,3], K[5/2,3]).

As before, let T1 and T2 be symmetries of a face f0 of P preserving a vertex and an edge,
respectively. Under the current situation it is also true that T1 is a plane reflection, whereas
T2 may be either a plane reflection or a half-turn.

The reasons explained in the proof of Lemma 9.1 still show that ⟨T1T2⟩ cannot contain
a 5-fold rotation, since there is no set of 10 coplanar vertices of a dodecahedron. However,
now ⟨T1T2⟩ may contain a 3-fold rotation since if k = 3 there are sets of 6 vertices in planes
perpendicular to axes of 3-fold rotation.

If T1T2 is a 3-fold rotation then the three 1-symmetric edges of f0 are coplanar. The only
three such edges (up to symmetry) are shown in Figure 38 (a), where the rotation axis goes
through the center of the dodecahedron and the fat vertex.

(a) (b)

Figure 38: 1-symmetric vertex of P

There are two ways of joining these three edges to complete a 3-symmetric 9-gon of type
9r invariant under T1T2. One way is by making each of the 1-symmetric vertices adjacent
to two non-adjacent consecutive vertices in the (hexagonal) convex hull of the edges, while
the other is by making those vertices adjacent to opposite vertices in the convex hull of the
edges. The first way can be achieved in K[5,3], M[5,3] and Cl[5,3], each with only one choice
of 1-symmetric vertices. These are shown in that order in the first row of Figure 39. The
second way can only be achieved in the graph M[5,3], but with two essentially distinct choices
of 1-symmetric vertices. (Note that two 2-symmetric vertices of M[5,3] that do not belong to
the same pentagon of D have either 2 or 0 common 1-symmetric neighbors.) These choices
are illustrated in the second row of Figure 39, where in each case only two consecutive
2-symmetric edges are added, indicating the 5-neighbors of the common 1-symmetric vertex.

Here we point out that when considering the orbit of each such polygon under [3, 5] the
vertex-figures arising from Figure 39 (a) and (e) become disconnected (each vertex-figure at
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Figure 39: Possible 3-symmetric 9-gons of P

a 2-symmetric vertex has three components, each being a line segment); in fact, Lemma 2.5
rules out the resulting structures. The vertex-figures arising from the other polygons are
themselves polygons and therefore we get four 3-orbit polyhedra in class 30,1 with 9-gonal
faces and whose 2-symmetric vertices are in the axes of the 3-fold rotations.

These 3 polyhedra are mutually non-isomorphic. If the faces are (c) then the three 1-
symmetric vertices of a face have a neighbor in common, and this does not happen if the faces
are (b) or (d). Moreover, in the 9-gon (d) every 1-symmetric vertex has a common neighbor
with each vertex of its opposite 1-symmetric edge in the 9-gon, property not satisfied by (b).

In the case that T1T2 is a rotatory reflection of order 6 then f0 is an 18-gon. In this
situation T2 must be a half-turn, and the axis of T1T2 must belong to the mirror of T1 and
must be perpendicular to the axis of T2. It follows that the centers of the six 1-symmetric
edges must be coplanar and they must be like those in Figure 38 (b). Since the midpoints
of the 1-symmetric edges lie on a plane through the center of D, the centers of all faces
coincide. Let X be the circle containing the centers of all edges of f0.

In order to construct a 3-symmetric 18-gon of type 18rh invariant under ⟨T1, T2⟩ and
having the edges in Figure 38 (b) as its six 1-symmetric edges, any 1-symmetric vertex v0
must be adjacent to two vertices in edges whose midpoints are consecutive in X ; furthermore,
the two neighbors of a 1-symmetric vertex v0 in f0 must be in the same side of the plane
spanned by X . This can be done either by taking the endpoints of a 1-symmetric edge of P
as the neighbors of v0 in f0, or by making v0 adjacent to the two endpoints of a (non-trivial)
diagonal of a pentagon. The first way cannot be achieved if the 1-skeleton is either M[5,3] or
Cl[5,3], but it can if it is K[5,3] in two different manners illustrated in Figure 40. We still may
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Figure 40: Two 18-gons of polyhedra in class 30,1

discard Figure 40 (a) due to Lemma 2.5, but the vertex-figures arising from Figure 40 (b)
are polygons and hence the orbit of such a face constitutes a polyhedron. The second way
can be achieved in each of the three candidates of 1-skeleton, each in only one manner; these
are shown in Figure 41; however, Lemma 2.5 rules out the polygons in Figure 41 (b). In the
remaining two cases the corresponding vertex-figures of P are polygons, yielding polyhedra.
Once again, the two polyhedra constructed with these 18-gons are non-isomorphic since their
1-skeleta are distinct.
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Figure 41: Three 18-gons of polyhedra in class 30,1

We claim that the 1-symmetric edges of f0 are antipodes if T1T2 is either a half-turn or
the central inversion. This is clear in case T1T2 the central inversion. If on the other hand, it
is a half-turn then T2 is a reflection and the four 2-symmetric vertices are co-planar, which is
attained in D if and only if the 1-symmetric edges are antipodes. Hexagons whose opposite
edges are antipodes in D do not exist if the 1-skeleton is either K[5,3] or Cl[5,3]. However,
there is one orbit under [3, 5] of each type in the graph M[5,3], shown in the left and center
of Figure 42. Both kinds of polygons induce connected vertex-figures.

Finally, if T1T2 is the identity then the f0 is a triangle containing one 1-symmetric edge
and one 1-symmetric vertex. This can only happen if the 1-skeleton of P is K[5,3], as shown
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Figure 42: Two 6-gons and a triangle of polyhedra in class 30,1

in the right of Figure 42, and the resulting polyhedron is the pentakis dodecahedron.

As in the previous subsection, applying ζ1 to each polyhedron will give another polyhe-
dron except in the case where T1T2 is a half-turn (and the faces are type 6r). The new two
possibilities for T1T2 (namely, a rotation of order 3 and a rotatory reflection of order 6) are
interchanged by ζ1.

Proposition 9.3. Up to similarity and vi-equivalence there are eighteen 3-orbit polyhedra
P in class 30,1 with Γ(P) = [3, 5] where the 2-symmetric vertices are those of a dodecahe-
dron. The graph induced by the 2-symmetric vertices in 9 of them is the 1-skeleton of the
dodecahedron, and in the other 9 is the 1-skeleton of a great stellated dodecahedron.

The 1-skeleta of these polyhedra are isomorphic to the pentakis dodecahedron, the graph
M[5,3] defined above, and the cloned dodecahedron. Geometrically, there are three with each
of the 1-skeleta K[5,3] and K[5/2,3], two with each of the 1-skeleta Cl[5,3] and Cl[5/2,3], and four
with each of the 1-skeleta M[3,5] and M[3,5/2].

We summarize our previous discussion in the following theorem.

Theorem 9.4. Up to similarity and vi-equivalence there are thirty 3-orbit polyhedra in class
30,1 with Γ(P) = [3, 5], summarized in Table 8.

9.2 Vertex-transitive case

Vertex-transitive polyhedra with group [3, 5]
1-symmetric edges 30
2-symmetric edges 60
Vertices twenty 9-valent, thirty 6-valent, or sixty 3-valent

Now we assume that P is a vertex-transitive polyhedron with G(P) = [3, 5].

We claim that P cannot have 30 vertices. Assume to the contrary that the vertices of
P are in the midpoints of the edges of D. Then P has thirty 6-valent vertices. Each vertex
v of P must be incident to two 1-symmetric edges and to four 2-symmetric edges. Each
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1-symmetric edge must be invariant under 4 distinct symmetries; however, the only segment
between v and another midpoint of edge of D that has a stabilizer of order greater than 2 is
the segment to its antipode. This contradicts the fact that there are two 1-symmetric edges
incident to v.

Hence we only need to consider polyhedra P with 20 and 60 vertices.

First we consider the case where P has 60 vertices. In this situation the stabilizer of
each vertex is generated by a plane reflection and the results of Subsection 4.3 apply. As a
consequence we have the following result.

Proposition 9.5. Up to similarity and vt-equivalence there are 48 vertex-transitive 3-valent
3-orbit polyhedra in E3 with symmetry group [3, 5]:

• the truncations of the dodecahedron {5, 3}, icosahedron {3, 5}, great stellated dodecahe-
dron {5/2, 3}, great icosahedron {3, 5/2}, great dodecahedron {5, 5/2}, small stellated
dodecahedron {5/2, 5} and the truncations of the Petrials of those 6 polyhedra (12 in
total); all in class 31,2;

• the image of the 12 polyhedra in the previous item under ζ2, all in class 31,2;

• the Petrials of the 24 polyhedra in the previous two items, all in class 31.

We are left with the case when P has twenty vertices. They must be located on the axes
of 3-fold rotations of D. Then every vertex v is incident to six 2-symmetric edges and to three
1-symmetric edges. Each of these two sets of edges is an orbit under the vertex stabilizer in
[3, 5]; recall that the latter is the dihedral group D3 with 6 elements. As mentioned in Section
4, we may visualize P as a graph in S2 with prescribed faces (cycles), and project it to P2,
since [3, 5] contains the central inversion. In the hemi-dodecahedron there is precisely one
orbit of vertices with 3 elements, and one of 6 elements under the stabilizer of v. The former
consists of the neighbors of v and the latter of all vertices that are neither v nor adjacent
to v. In particular, all edges of a 1-symmetric face project to diagonals of pentagons in the
hemi-dodecahedron.

(a) (b) (c) (d) (e)

Figure 43: 1- and 2-symmetric faces of P

An exhaustive search shows that in the graph described above all possible 1-symmetric
faces are images under the symmetry group of the hemi-dodecahedron of those in black lines
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(a) (b) (c) (d) (e) (f)

Figure 44: 3-symmetric faces of P

in Figure 43 (a), (b) and (c); all possible 2-symmetric faces are images of those in Figure
43 (d) and (e); and all possible 3-symmetric faces are images of those in Figure 44. The
polygons in Figure 44 (e), (f) are hexagons where an edge is traversed twice. When lifting
them to S2, they become hexagons using one pair of antipodal 1-symmetric edges, and four
2-symmetric edges that are not paired by the central inversion (see Figure 48).

To convince ourselves that we obtained all possible 3-symmetric faces f0, we divided the
cases as follows. There are 3 essentially distinct ways to choose two consecutive 2-symmetric
edges of f0, illustrated in Figure 45 (a), (b) and (c). There are also 3 essentially distinct
ways to choose consecutive 1-symmetric and 2-symmetric edges of f0, shown in Figure 45
(d), (e) and (f). Finally, we have a choice on whether the stabilizer of a 1-symmetric edge
contains a reflection (r) or a half-turn (h). (Recall that the stabilizer of a vertex is always
a reflection.) In this way, the faces in Figure 44 (a), (b), (c), (d), (e) and (f) correspond
respectively to the choices aer, adh, cdr, cfh, cfr, aeh.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 45: Cases for choices of 1- and 2-symmetric edges of a 3-symmetric face f ; full and
empty dots represent 1- and 2-symmetric vertices of f , respectively

Out of the 18 possible combinations in {a, b, c}×{d, e, f}×{r, h} we still have to discard
12 of them. From Remark 2.9 we know that if the last entry is h then f0 has an even number
of vertices, and so it must be divisible by 6. In fact, that number must be 3k where k is the
order of the 3-step rotation T around f0. Since [3, 5] has no isometries of order 4 we imply
that T must be an involution, or a rotatory reflection of order 6. With this argument we
discard bdh, beh, cdh and ceh (T would be a rotatory reflection of order 10 in all these cases).
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We can further discard afh, bfh, adr, ber and cer, since traversing the corresponding path in
the graph on the projective plane goes more than twice through a vertex (and so it cannot
be lifted as a polygon in S2); in adr all vertices belong to a pentagon appearing three times,
while in the other four cases just mentioned one vertex is in the axis of the 3-step rotation T
and this is a 3-fold rotation in the projective plane. The remaining three cases afr, bdr, bfr
induce a degenerate 15-gon in the projective plane, with the vertices of a pentagon traversed
twice and all the edges of this pentagon traversed once. It is not possible to lift such a path
as a polygon in S2 since both 2-symmetric edges at a vertex should have a vertex on some
lift of the special pentagon to D, and so two lifts to S2 yield degenerate 15-gons that use the
vertices of a pentagon twice while the other two lift into 30-gons.

The arguments in the enumeration of the 1- and 2-symmetric faces are simpler and we
omit the details.

Recall that each edge in Figures 43 and 44 can be lifted in four different ways to S2, by
considering both antipodal pairs of vertices as candidates of endpoints. These four edges
can be divided into pairs that are equivalent under [3, 5] and so we may think of only two
possible ways of lifting the edges to S2.

Since 2- and 3-symmetric faces have two kinds of edges, each such face in Figures 43 and
44 can be lifted to four essentially different structures in S2, although they sometimes fail to
be polygons. The corresponding polyhedra are related by the operations ζ, ζ1 and ζ2.

Figures 46, 47 and 48 illustrate respectively the 1-, 2- and 3-symmetric faces obtained
by lifting those in Figures 43 and 44 in such a way that all edges are either edges of D or
diagonals of its pentagons. We shall refer to this 1-skeleton by MD (standing for ‘modified
dodecahedron’).

(a) (b) (c)

Figure 46: Candidate 1-symmetric faces of 9-valent polyhedra in class 31,2

Moreover, there is a hexagon obtained by lifting to S2 the polygon in Figure 44 (f) that
has no valid representative in the 1-skeleton MD. The representative in MDζ1 is shown in
Figure 49.

As it can be easily seen on the triangle and pentagons in Figure 46, the operations ζ,
ζ1 and ζ2 do not induce isomorphisms on MD, since triangles or pentagons are transformed
into hexagons or decagons. In fact, MD and MDζ1 contain a clique with 5 vertices, whereas
MDζ and MDζ2 do not.

According to [23] and to the software Sage [27], up to isomorphism there is only one
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(a) (b)

Figure 47: Candidate 2-symmetric faces of 9-valent polyhedra in class 31,2

(a) (b) (c)

(d) (e)

Figure 48: Candidate 3-symmetric faces of 9-valent polyhedra in class 31

9-valent vertex-transtive graph on 20 vertices with girth 3, diameter 3, clique number 5 and
containing 140 triangles. Both MD and MDζ1 satisfy those parameters, and hence they are
isomorphic. Furthermore, the 2-symmetric edges can be distinguished as those that belong
to only 4 triangles while the 1-symmetric edges belong to 6 of them. It follows that every
polyhedron with a realization on the 1-skeleton MD also has a realization with 1-skeleton
MDζ1 and vice-versa. Since MDζ = (MDζ1)ζ2 , we can conclude that MDζ and MDζ2 are
also isomorphic and serve as 1-skeleton to the same abstract polyhedra. The automorhpisms
of graphs between MD and MDζ1 and between MDζ2 and MDζ are not induced by any
of the operations ζ, ζ1 or ζ2; part of the consequence is that the polygons projecting to the
projective plane to those in Figure 44 (e) and (f) are related by the isomorphism between
MD and MDζ1 , but not by ζ1 itself. Here we shall use Figures 43, 44, 46, 47, 48 and 49 as
references for the enumeration of the polyhedra on each 1-skeleton.

The previous discussion and a careful examination of the sizes of the preimages of the
polygons shows the following.

• The hexagon in Figure 43 (d) has four distinct polygonal preimages: the planar hexagon
in Figure 47 (a) in MD, a skew hexagon in MDζ , and two skew 12-gons in MDζ1 and
MDζ2 .
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Figure 49: One additional candidate 3-symmetric face of 9-valent polyhedra in class 31

• The 6-gon in Figure 43 (e) has four distinct polygonal preimages: the skew 12-gon in
Figure 47 (b) in MD, a planar non-convex hexagon in MDζ1 , a skew hexagon in MDζ2

and another skew 12-gon in MDζ .

• The triangle in Figure 44 (a) has four distinct polygonal preimages: the triangle in
Figure 48 (a) in MD, another triangle in MDζ2 , and two skew hexagons of type 6rh in
MDζ1 and MDζ .

• The 9-gon in Figure 44 (b) has four distinct polygonal preimages: the 18-gon in Figure
48 (b) in MD, another 18-gon in MDζ2 (both of type 18rh), and two 9-gon of type 9r
in MDζ1 and MDζ .

• The 9-gon in Figure 44 (c) has four distinct polygonal preimages: the 9-gon in Figure
48 (c) in MD, another 9-gon in MDζ2 (both of type 9r), and two 18-gons of type 18rh
in MDζ1 and MDζ .

• The triangle in Figure 44 (d) has four distinct polygonal preimages: the hexagon in
Figure 48 (d) in MD, another hexagon in MDζ2 (both of type 6rh), and two triangles
in MDζ1 and MDζ .

• The degenerate hexagon in Figure 44 (e) has only two new preimages: the hexagon in
Figure 48 (e) in MD and another hexagon in MDζ2 (both of type 6r). The remaining
two preimages degenerate to unions of triangles like those in the previous item.

• The degenerate hexagon in Figure 44 (f) has only two new preimages: the hexagon in
Figure 49 in MDζ1 and another hexagon in MDζ (both of type 6r). The remaining
two preimages degenerate to unions of triangles like those in the first item.

There are 20 polyhedra P in class 31 with G(P) = [3, 5] since in all cases the vertex-figures
are polygons. They are described in Proposition 9.6. None of them are combinatorially
regular; there are no regular polyhedra of type {3, 9}, {6, 9}, {9, 9}, or {18, 9} with 360 flags
(see [14]).

The 1-symmetric faces of polyhedra in class 31,2 only have 2-symmetric edges, implying
that each such face has only two non-congruent preimages in S2. By choosing the preimage
of a 2-symmetric face we automatically obtain the preimage of all 2-symmetric edges and
hence also the preimage of the 1-symmetric faces.
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The three choices of 1-symmetric faces together with the two choices of 2-symmetric
faces give six possible structures. However, only four of them satisfy the conditions to be a
polyhedron. This is not the case when the 1-symmetric faces are like that in Figure 43 (a)
and the 2-symmetric faces like that in Figure 43 (d), or if the 1-symmetric faces are like that
in Figure 43 (c) and the 2-symmetric faces like that in Figure 43 (e); in those situations the
vertex-figures are disconnected (union of 3 triangles). The remaining four cases indeed yield
polyhedra.

Among the polyhedra in class 31,2 only two are equivelar; in both cases the 1-symmetric
faces are the orbit of the image under ζ of that in Figure 46 (a). In one polyhedron the
2-symmetric faces are the orbit of the image under ζ of that in Figure 47 (a), and in the
other they are the orbit of the image under ζ2 of that in Figure 47 (b). Those polyhedron
have type {6, 9}, but they are not regular since there are no regular polyhedra with that
type and 360 flags (see [14]).

Proposition 9.6. Up to similarity there are twenty 3-orbit polyhedra in class 31 with G(P) =
[3, 5] and 20 vertices. The 1-skeleta are MD, MDζ2, MDζ1 and MDζ, with 5 polyhedra in
each 1-skeleton.

Up to similarity there are sixteen 3-orbit polyhedra in class 31,2 with G(P) = [3, 5] and
20 vertices. Their 1-skeleta are MD, MDζ1, MDζ2 and MDζ, with four polyhedra in each
1-skeleton.

Theorem 9.7. Up to similarity and vt-equivalence, there are 84 vertex-transitive 3-orbit
polyhedra with symmetry group [3, 5], summarized in Tables 9, 10 and 11.

10 Concluding remarks

Having determined all of the finite 3-orbit polyhedra in E3 with irreducible symmetry group,
there are still some questions to consider, such as which polyhedra have a canonical geometric
dual, and how the polyhedra are related by the Petrial operation. To help answer those
questions and organize the information, we have compiled tables in Section 14. Let us
describe the format of those tables.

Each table consists of polyhedra with a fixed symmetry group. The 53 polyhedra with
symmetry group [3, 4] are split into two tables; one for the vertex-transitive polyhedra and
one for the vertex-intransitive polyhedra. The 114 polyhedra with symmetry group [3, 5] are
split into four tables, with the first one containing the vertex-intransitive polyhedra.

Now we explain the columns:

(a) 1-skeleton: The polyhedra in each table are grouped together by their 1-skeleton.
The names of these 1-skeleta are introduced in the appropriate section, and they are
also summarized in Table 2.

(b) #: We number the polyhedra with a given 1-skeleton so that other entries can cross-
reference them.
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(c) Class: The class of 3-orbit polyhedra: 30,1, 31, or 31,2.

(d) Schläfli symbol: For each class of polyhedra, we describe the types of faces and
vertices with an extended Schläfli symbol as described in Section 2.

(e) Petrial: The Petrial of a given polyhedron must have the same 1-skeleton, so if the
Petrial is also a polyhedron, then we indicate which by #N which means the Nth
polyhedron with this same 1-skeleton. Otherwise we write N/A.

(f) Dual: If the polyhedron has a canonical dual (see Section 2.5), then it is recorded here.
We refer to the dual by listing the table it appears in, the name of its 1-skeleton, and
its number. If it has no canonical dual, but its combinatorial dual is realizable, then
we denote that in the same way but starting with “(NC)” meaning “non-canonical”.
If the combinatorial dual is not realizable as a 3-orbit polyhedron, then we denote that
with N/A.

(g) Figure: If there is a figure that shows the types of faces, then we refer to it here.

(h) Type: If there is an easy way to refer to the combinatorial type, we include it here.
There are many pairs of polyhedra that are combinatorially equivalent, and if we have
no other standard way to refer to the type, then we simply note here the combinatorially
equivalent polyhedron by specifying the 1-skeleton and number. (For example, see
the bottom two groups of Table 5.) If a polyhedron is combinatorially regular, we
include that information in this column. A blank in this column indicates that the
combinatorial type does not have a common name, and that no other polyhedron has
the same combinatorial type.

Note that by [20, Thm. 5.1], the combinatorial type of every trivalent 3-orbit polyhe-
dron in class 31,2 is the truncation of a regular map. Using the GAP package RAMP
([7]), we were often able to find a single possible candidate based on the Schläfli symbol,
size, and Petrial. These regular maps are denoted in one of several possible ways:

(a) The symbol {p, q | h}r denotes the universal regular map of type {p, q} with Petrie
paths of length r and 2-holes of length h. (A 2-hole of a polyhedron is a walk in
the 1-skeleton that, upon entering a vertex, leaves using the second exit on the
left.) We may omit either r or h when the other parameters are already sufficient
to distinguish the polyhedron, giving us symbols like {p, q}r and {p, q | h}.

(b) A symbol like {3, 10} ∗ 120b denotes a regular polyhedron in [14].

(c) A symbol like N16.5 denotes a nonorientable regular map at https://www.math.
auckland.ac.nz/~conder/RegularNonorientableMaps602.txt while a symbol
like R3.8 denotes an orientable regular map in https://www.math.auckland.ac.

nz/~conder/RegularOrientableMaps101.txt (see [3]).

For the reader who wants to double-check the information in the tables, here are some
helpful hints:
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(a) Since the Petrial of P has the same 1-skeleton as P , there are usually only a few
polyhedra to check. In many cases, a possible candidate for the Petrial of P has faces
that share many vertices in a row in P , and so it cannot be the Petrial.

(b) Many 3-orbit polyhedra have a pair of faces that share multiple edges, which means
that a geometric dual cannot exist. In particular, Propositon 2.11 rules out several
possibilities. In other cases, it is enough to consider the possible Schläfli symbol of the
dual and see that it does not occur among polyhedra with the appropriate symmetry
group and class.

(c) Note that ζ2 never changes the size of a 3-symmetric face or indeed any 3-symmetric
walk in a 1-skeleton. So if P is in class 31,2, then the Petrie polygons of Pζ2 are the
same size as those of P . Thus it often turns out that (Pζ2)π = (Pπ)ζ2 .

(d) Perhaps the most time-consuming thing to verify is the finer structure of the faces; i.e.,
distinguishing np from ns and distinguishing among nr, nh, and nrh. The following
observations may help:

(a) If the symmetry group is [3, 4]+ or [3, 5]+, then the 3-symmetric faces must be
type nh.

(b) A 3-symmetric face with n odd must be either nr or nh.

(c) A 3-symmetric face nr has its vertices contained in two parallel planes (or possibly
a single plane for a certain choice of parameters in that equivalence class).

(d) In many cases, Proposition 4.3 rules out type nh for a 3-symmetric face.

(e) When looking for combinatorially regular polyhedra, keep in mind that if P is combi-
natorially regular, then so is Pπ. This cuts the search space down considerably, since
most 3-orbit polyhedra in class 31 have Petrials where the two types of faces have
different sizes.

We summarize some of the interesting features of our data in the final theorem.

Theorem 10.1. There are 188 3-orbit polyhedra in E3 with irreducible symmetry group.
There are 5 with symmetry group [3, 3], 4 with symmetry group [3, 4]+, 53 with symmetry
group [3, 4], 12 with symmetry group [3, 5]+, and 114 with symmetry group [3, 5]. Further-
more,

(a) Six are combinatorially regular; the rest are combinatorially 3-orbit.

(b) There are 109 distinct combinatorial types: 30 that have a single 3-orbit geometric
realization, and 79 that have two 3-orbit geometric realizations, including all of the
combinatorial types of polyhedra with symmetry group [3, 5].

(c) There are 44 polyhedra in class 30,1 (vertex-intransitive), 72 polyhedra in class 31,2

(face-intransitive), and 72 polyhedra in class 31 (vertex- and face-transitive).
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(d) 88 of the polyhedra are 3-valent.

(e) There are 36 polyhedra (18 pairs) that have a canonical geometric dual. There are
also two polyhedra with no canonical dual, but whose combinatorial dual is geometri-
cally realizable as a 3-orbit polyhedron. None of the polyhedra are self-dual (not even
combinatorially).

(f) There are 130 polyhedra (65 pairs) such that the Petrial is also a polyhedron.
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Symmetry Notation Common name Petrial Type

[3, 3]
{3, 3} Tetrahedron {4, 3}3
{4, 3}3 Hemi-cube {3, 3}

[3, 4]

{3, 4} Octahedron {6, 4}3
{4, 3} Cube {6, 3}4
{6, 4}3 N/A {3, 4}
{6, 3}4 N/A {4, 3}

[3, 5]

{3, 5} Icosahedron {10, 5}3
{3, 5

2
} Great icosahedron {10

3
, 5
2
}3 Isomorphic to {3, 5}

{5, 3} Dodecahedron {10, 3}5
{5
2
, 3} Great stellated dodecahedron {10

3
, 3}5 Isomorphic to {5, 3}

{5, 5
2
} Great dodecahedron {6, 5

2
}5

{5
2
, 5} Small stellated dodecahedron {6, 5}5 Isomorphic to {5, 5

2
}

{10, 5}3 N/A {3, 5}
{10

3
, 5
2
}3 N/A {3, 5

2
} Isomorphic to {10, 5}3

{10, 3}5 N/A {5, 3}
{10

3
, 3}5 N/A {5

2
, 3} Isomorphic to {10, 3}5

{6, 5
2
}5 N/A {5, 5

2
}

{6, 5}5 N/A {5
2
, 5} Isomorphic to {6, 5

2
}

Table 1: The finite regular polyhedra in E3

1-skeleton Description Reference

C Cube with subdivided edges and altitudes of each face Section 7.1.3
Cl[p,q] Cloned skeleton of {p, q} Section 4.1
CO Skeleton of cuboctahedron with diagonals of square faces added Section 7.2
H[p,q] Skeleton of the truncated hemi-{p, q}, embedded in E3. Section 6

(Has left- and right-handed forms) Section 8
K[p,q] Skeleton of the Kleetope over {p, q} (e.g. triakis icosahedron) Section 2.5
M[p,q] Skeleton of a modified Kleetope over {p, q} Section 9.1
MD Skeleton of a dodecahedron with all diagonals of faces added Section 9.2
T[p,q] Skeleton of the truncated {p, q} Section 2.5

Table 2: The 1-skeleta of 3-orbit polyhedra in E3 with irreducible symmetry group. Whenever
{p, q} is combinatorially equivalent to {p′, q′}, it is also the case that a 1-skeleton of the form
S[p,q] is combinatorially equivalent to S[p′,q′]. Additionally, H[4,3] is combinatorially isomorphic
to T[3,3].
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1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

T[3,3]

1 31,2 {(3, 6p), 3} #3 K[3,3] #1 N/A Tr({3, 3})
2 31,2 {(3, 8s), 3} #4 N/A N/A Tr({4, 3}3)
3 31 {12rh, 3} #1 N/A N/A Tr({3, 3})π
4 31 {9r, 3} #2 N/A N/A Tr({4, 3}3)π

K[3,3] 1 30,1 {3, (3, 6)} N/A T[3,3] #1 N/A Kl({3, 3})

Table 3: The five 3-orbit polyhedra with symmetry group [3, 3]

1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

H[4,3]

1 31,2 {(3, 6s), 3} #3 N/A 12c Tr({3, 3})
2 31,2 {(3, 8s), 3} #4 N/A 12d Tr({4, 3}3)
3 31 {12h, 3} #1 N/A 12b Tr({3, 3})π
4 31 {9h, 3} #2 N/A 12a Tr({4, 3}3)π

Table 4: The four 3-orbit polyhedra with symmetry group [3, 4]+. Each polyhedron comes
in a left-handed and right-handed form.

1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

K[3,4]

1 30,1 {3, (3, 8)} N/A Table 6 T[4,3] #1 16a Kl({3, 4})
2 30,1 {6r, (3, 8)} N/A N/A 16b
3 30,1 {6rh, (3, 8)} N/A N/A 16c

K[4,3]
1 30,1 {3, (4, 6)} #2 Table 6 T[3,4] #1 18a Kl({4, 3})
2 30,1 {12rh, (4, 6)} #1 N/A 18b Kl({4, 3})π

Kζ1
[4,3]

1 30,1 {6r, (4, 6)} #2 N/A 18c
2 30,1 {6r, (4, 6)} #1 N/A 18d
3 30,1 {6rh, (4, 6)} N/A N/A 18e

Cl[4,3]
1 30,1 {6r, (3, 6)} N/A N/A 19a
2 30,1 {6rh, (3, 6)} N/A N/A 19b

C
1 30,1 {6r, (3, 4)} #2 Table 6 CO #6 21a
2 30,1 {6rh, (3, 4)} #1 N/A 21b
3 30,1 {12rh, (3, 4)} N/A N/A 21c

Table 5: The 13 vertex-intransitive 3-orbit polyhedra with symmetry group [3, 4]
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1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

T[3,4]

1 31,2 {(4p, 6p), 3} #3 Table 5 K[4,3] #1 N/A Tr({3, 4})
2 31,2 {(4p, 12s), 3} #4 N/A N/A Tr({6, 4}3)
3 31 {12rh, 3} #1 N/A N/A Tr({3, 4})π
4 31 {12r, 3} #2 N/A N/A Tr({6, 4}3)π

T ζ2
[3,4]

1 31,2 {(4s, 12s), 3} #3 N/A N/A Tr({6, 4}3)
2 31,2 {(4s, 6s), 3} #4 (NC) Table 5 K[4,3] #1 N/A Tr({3, 4})
3 31 {12rh, 3} #1 N/A N/A Tr({6, 4}3)π
4 31 {12r, 3} #2 N/A N/A Tr({3, 4})π

T[4,3]

1 31,2 {(3, 8p), 3} #4 Table 5 K[3,4] #1 N/A Tr({4, 3})
2 31,2 {(3, 12s), 3} #3 N/A N/A Tr({6, 3}4)
3 31 {12r, 3} #2 N/A N/A Tr({6, 3}4)π
4 31 {18rh, 3} #1 N/A N/A Tr({4, 3})π

T ζ2
[4,3]

1 31,2 {(6s, 8s), 3} #4 N/A N/A Tr({4, 6}3)
2 31,2 {(6s, 6s), 3} #3 N/A N/A {6, 3}(2,2) (reg.)
3 31 {12r, 3} #2 N/A N/A {6, 3}π(2,2) (reg.)
4 31 {18rh, 3} #1 N/A N/A Tr({4, 6}3)π

T ζ
[4,3]

1 31,2 {(6s, 12s), 3} #4 N/A N/A Tr(R3.8)
2 31,2 {(6s, 8s), 3} #3 N/A N/A Tr(R3.4)
3 31 {9r, 3} #2 N/A N/A Tr(R3.4)π

4 31 {12rh, 3} #1 N/A N/A Tr(R3.8)π

CO

1 31 {12rh, 6r} N/A N/A 23a COζ2 #1
2 31 {12h, 6rh} N/A N/A 23b COζ2 #2
3 31 {6rh, 6r} #6 N/A 23c COζ2 #3
4 31 {6h, 6rh} #9 N/A 23d COζ2 #4
5 31,2 {(3, 4p), 6r} N/A N/A 24ac COζ2 #8
6 31,2 {(3, 4p), 6r} #3 Table 5, C #1 24ad COζ2 #9
7 31,2 {(3, 8s), 6r} N/A N/A 24ae, 25 COζ2 #10
8 31,2 {(6p, 4p), 6rh} N/A N/A 24bc COζ2 #5
9 31,2 {(6p, 4p), 6rh} #4 N/A 24bd COζ2 #6
10 31,2 {(6p, 8s), 6rh} N/A N/A 24be COζ2 #7

COζ2

1 31 {12rh, 6r} N/A N/A 23a CO #1
2 31 {12h, 6rh} N/A N/A 23b CO #2
3 31 {6rh, 6r} #9 N/A 23c CO #3
4 31 {6h, 6rh} #6 N/A 23d CO #4
5 31,2 {(6s, 4s), 6r} N/A N/A 24ac CO #8
6 31,2 {(6s, 4p), 6r} #4 N/A 24ad CO #9
7 31,2 {(6s, 8s), 6r} N/A N/A 24ae CO #10
8 31,2 {(3, 4s), 6rh} N/A N/A 24bc CO #5
9 31,2 {(3, 4p), 6rh} #3 (NC) Table 5, C #1 24bd CO #6
10 31,2 {(3, 8s), 6rh} N/A N/A 24be CO #7

Table 6: The 40 vertex-transitive 3-orbit polyhedra with symmetry group [3, 4]72



1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

H[5,3]

1 31 {15h, 3} #4 N/A 31a Tr({5, 3}5)π
2 31 {15h, 3} #3 N/A 31b Tr({5, 3}5)π
3 31,2 {(3, 10s), 3} #2 N/A 27a, 32a Tr({5, 3}5)
4 31,2 {(3, 10s), 3} #1 N/A 27a, 32b Tr({5, 3}5)

H[3,5]

1 31 {15h, 3} #4 N/A 31c Tr({5, 5}3)π
2 31 {9h, 3} #3 N/A 31e Tr({3, 5}5)π
3 31,2 {(5, 6s), 3} #2 N/A 27b, 32e Tr({3, 5}5)
4 31,2 {(5, 10s), 3} #1 N/A 27b, 32d Tr({5, 5}3)

H[3,5/2]

1 31 {15h, 3} #4 N/A 31d Tr({5, 5}3)π
2 31 {9h, 3} #3 N/A 31f Tr({3, 5}5)π
3 31,2 {(5, 6s), 3} #2 N/A 27c, 32f Tr({3, 5}5)
4 31,2 {(5, 10s), 3} #1 N/A 27c, 32c Tr({5, 5}3)

Table 7: The twelve 3-orbit polyhedra with symmetry group [3, 5]+. Each polyhedron comes
in a left-handed and a right-handed form. Note that H[3,5] and H[3,5/2] are distinguished by
the choice of 1-symmetric edges, see Figures 26 and 27.
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1-skeleton # Class Schläfli Petrial Dual Figure Type
symbol

K[3,5] 1 30,1 {3, (3, 10)} N/A Table 9 T[5,3] #1 36a Kl({3, 5})
K[3,5/2] 1 30,1 {3, (3, 10)} N/A Table 9 T[5/2,3] #1 36a Kl({3, 5})

M[3,5]
1 30,1 {6rh, (3, 10)} N/A N/A 35c M[3,5/2] #1
2 30,1 {6r, (3, 10)} N/A N/A 35d M[3,5/2] #2

M[3,5/2]
1 30,1 {6rh, (3, 10)} N/A N/A 35c M[3,5] #1
2 30,1 {6r, (3, 10)} N/A N/A 35d M[3,5] #2

Cl[3,5]

1 30,1 {3, (5, 10)} N/A Table 10 T[5/2,5] #1 36b Kl({5, 5 | 3})
2 30,1 {6rh, (5, 10)} N/A N/A 35a Cl[3,5/2] #2
3 30,1 {6r, (5, 10)} N/A N/A 35b Cl[3,5/2] #3

Cl[3,5/2]

1 30,1 {3, (5, 10)} N/A Table 10 T[5,5/2] #1 36b Kl({5, 5 | 3})
2 30,1 {6rh, (5, 10)} N/A N/A 35a Cl[3,5] #2
3 30,1 {6r, (5, 10)} N/A N/A 35b Cl[3,5] #3

K[5,3]

1 30,1 {18rh, (5, 6)} #3 N/A 40b Kl({5, 3})π
2 30,1 {18rh, (5, 6)} N/A N/A 41a K[5/2,3] #2
3 30,1 {3, (5, 6)} #1 Table 9 T[3,5] #1 42c Kl({5, 3})

K[5/2,3]

1 30,1 {18rh, (5, 6)} #3 N/A 40b Kl({5, 3})π
2 30,1 {18rh, (5, 6)} N/A N/A 41a K[5,3] #2
3 30,1 {3, (5, 6)} #1 Table 9 T[3,5/2] #1 42c Kl({5, 3})

Cl[5,3]
1 30,1 {9r, (3, 6)} #2 Table 11 MDζ1 #3 39c Cl[5/2,3] #1
2 30,1 {18rh, (3, 6)} #1 N/A 41c Cl[5/2,3] #2

Cl[5/2,3]
1 30,1 {9r, (3, 6)} #2 Table 11 MD #2 39c Cl[5,3] #1
2 30,1 {18rh, (3, 6)} #1 N/A 41c Cl[5,3] #2

M[5,3]

1 30,1 {9r, (5, 6)} N/A N/A 39b M[5/2,3] #1
2 30,1 {9r, (5, 6)} #4 Table 11 MDζ1 #1 39d M[5/2,3] #2
3 30,1 {6r, (5, 6)} N/A N/A 42a M[5/2,3] #3
4 30,1 {6rh, (5, 6)} #2 N/A 42b M[5/2,3] #4

M[5/2,3]

1 30,1 {9r, (5, 6)} N/A N/A 39b M[5,3] #1
2 30,1 {9r, (5, 6)} #4 Table 11 MD #4 39d M[5,3] #2
3 30,1 {6r, (5, 6)} N/A N/A 42a M[5,3] #3
4 30,1 {6rh, (5, 6)} #2 N/A 42b M[5,3] #4

Table 8: The 30 vertex-intransitive 3-orbit polyhedra with symmetry group [3, 5]
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1-skeleton # Class Schläfli Petrial Dual Figure Type
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T[3,5]

1 31,2 {(5, 6p), 3} #3 Table 8 K[5,3] #3 N/A Tr({3, 5})
2 31,2 {(5, 20s), 3} #4 N/A N/A Tr({10, 5}3)
3 31 {18rh, 3} #1 N/A N/A Tr({3, 5})π
4 31 {15r, 3} #2 N/A N/A Tr({10, 5}3)π

T ζ2
[3,5]

1 31,2 {(10s, 12s), 3} #3 N/A N/A Tr(N16.5)
2 31,2 {(10s, 10s), 3} #4 N/A N/A {10, 3} ∗ 360 (reg.)
3 31 {18rh, 3} #1 N/A N/A Tr(N16.5)π

4 31 {15r, 3} #2 N/A N/A {15, 3} ∗ 360 (reg.)

T[3,5/2]

1 31,2 {(5, 6p), 3} #3 Table 8 K[5/2,3] #3 N/A Tr({3, 5})
2 31,2 {(5, 20s), 3} #4 N/A N/A Tr({10, 5}3)
3 31 {18rh, 3} #1 N/A N/A Tr({3, 5})π
4 31 {15r, 3} #2 N/A N/A Tr({10, 5}3)π

T ζ2
[3,5/2]

1 31,2 {(10s, 12s), 3} #3 N/A N/A Tr(N16.5)
2 31,2 {(10s, 10s), 3} #4 N/A N/A {10, 3} ∗ 360 (reg.)
3 31 {18rh, 3} #1 N/A N/A Tr(N16.5)π

4 31 {15r, 3} #2 N/A N/A {15, 3} ∗ 360 (reg.)

T[5,3]

1 31,2 {(3, 10p), 3} #3 Table 8 K[3,5] #1 N/A Tr({5, 3})
2 31,2 {(3, 20s), 3} #4 N/A N/A Tr({10, 3}5)
3 31 {30rh, 3} #1 N/A N/A Tr({5, 3})π
4 31 {15r, 3} #2 N/A N/A Tr({10, 3}5)π

T ζ2
[5,3]

1 31,2 {(6s, 20s), 3} #3 N/A N/A Tr(N16.5δ)
2 31,2 {(6s, 10s), 3} #4 N/A N/A Tr({5, 6} ∗ 120c)
3 31 {30rh, 3} #1 N/A N/A Tr(N16.5δ)π

4 31 {15r, 3} #2 N/A N/A Tr({5, 6} ∗ 120c)π

T[5/2,3]

1 31,2 {(3, 10p), 3} #3 Table 8 K[3,5/2] #1 N/A Tr({5, 3})
2 31,2 {(3, 20s), 3} #4 N/A N/A Tr({10, 3}5)
3 31 {30rh, 3} #1 N/A N/A Tr({5, 3})π
4 31 {15r, 3} #2 N/A N/A Tr({10, 3}5)π

T ζ2
[5/2,3]

1 31,2 {(6s, 20s), 3} #3 N/A N/A Tr(N16.5δ)
2 31,2 {(6s, 10s), 3} #4 N/A N/A Tr({5, 6} ∗ 120c)
3 31 {30rh, 3} #1 N/A N/A Tr(N16.5δ)π

4 31 {15r, 3} #2 N/A N/A Tr({5, 6} ∗ 120c)π

Table 9: 32 of the vertex-transitive 3-orbit polyhedra with symmetry group [3, 5] and 60
vertices
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1-skeleton # Class Schläfli Petrial Dual Figure Type
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T[5,5/2]

1 31,2 {(5, 10p), 3} #3 Table 8 Cl[3,5/2] #1 N/A Tr({5, 5 | 3})
2 31,2 {(5, 12s), 3} #4 N/A N/A Tr({5, 5 | 3}π)
3 31 {30rh, 3} #1 N/A N/A Tr({5, 5 | 3})π
4 31 {9r, 3} #2 Table 11 MD #5 N/A Tr({5, 5 | 3}π)π

T ζ2
[5,5/2]

1 31,2 {(10s, 20s), 3} #3 N/A N/A Tr({10, 10 | 3}3)
2 31,2 {(10s, 6s), 3} #4 N/A N/A Tr({3, 10} ∗ 120b)
3 31 {30rh, 3} #1 N/A N/A Tr({10, 10 | 3}3)π
4 31 {9r, 3} #2 Table 11 MDζ2 #5 N/A Tr({3, 10} ∗ 120b)π

T[5/2,5]

1 31,2 {(5, 10p), 3} #3 Table 8 Cl[3,5] #1 N/A Tr({5, 5 | 3})
2 31,2 {(5, 12s), 3} #4 N/A N/A Tr({5, 5 | 3}π)
3 31 {30rh, 3} #1 N/A N/A Tr({5, 5 | 3})π
4 31 {9r, 3} #2 Table 11 MDζ1 #8 N/A Tr({5, 5 | 3}π)π

T ζ2
[5/2,5]

1 31,2 {(10s, 20s), 3} #3 N/A N/A Tr({10, 10 | 3}3)
2 31,2 {(10s, 6s), 3} #4 N/A N/A Tr({3, 10} ∗ 120b)
3 31 {30rh, 3} #1 N/A N/A Tr({10, 10 | 3}3)π
4 31 {9r, 3} #2 Table 11 MDζ #8 N/A Tr({3, 10} ∗ 120b)π

Table 10: The remaining 16 vertex-transitive 3-orbit polyhedra with symmetry group [3, 5]
and 60 vertices
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MD

1 31,2 {(5, 12s), 9r} #5 N/A 43ae, 46b, 47b MDζ1 #4
2 31,2 {(3, 6p), 9r} N/A Table 8 Cl[5/2,3] #1 43bd, 46a, 47a MDζ1 #3
3 31,2 {(3, 12s), 9r} N/A N/A 43be, 46a, 47b MDζ1 #2
4 31,2 {(5, 6p), 9r} #8 Table 8 M[5/2,3] #2 43cd, 46c, 47a MDζ1 #1
5 31 {3, 9r} #1 Table 10 T[5,5/2] #4 44a, 48a MDζ1 #8
6 31 {18rh, 9r} N/A N/A 44b, 48b MDζ1 #7
7 31 {9r, 9r} N/A N/A 44c, 48c MDζ1 #6
8 31 {6rh, 9r} #4 N/A 44d, 48d MDζ1 #5
9 31 {6r, 9r} N/A N/A 44e, 48e MDζ1 #9

MDζ1

1 31,2 {(5, 6p), 9r} #5 Table 8 M[5,3] #2 43ae MD #4
2 31,2 {(3, 12s), 9r} N/A N/A 43bd MD #3
3 31,2 {(3, 6p), 9r} N/A Table 8 Cl[5,3] #1 43be MD #2
4 31,2 {(5, 12s), 9r} #8 N/A 43cd MD #1
5 31 {6rh, 9r} #1 N/A 44a MD #8
6 31 {9r, 9r} N/A N/A 44b MD #7
7 31 {18rh, 9r} N/A N/A 44c MD #6
8 31 {3, 9r} #4 Table 10 T[5/2,5] #4 44d MD #5
9 31 {6r, 9r} N/A N/A 44f, 49 MD #9

MDζ2

1 31,2 {(10s, 6s), 9r} #5 N/A 43ae MDζ #4
2 31,2 {(6s, 12s), 9r} N/A N/A 43bd MDζ #3
3 31,2 {(6s, 6s), 9r} N/A N/A 43be MDζ #2
4 31,2 {(10s, 12s), 9r} #8 N/A 43cd MDζ #1

5 31 {3, 9r} #1 Table 10 T ζ2
[5,5/2] #4 44a MDζ #8

6 31 {18rh, 9r} N/A N/A 44b MDζ #7
7 31 {9r, 9r} N/A N/A 44c MDζ #6
8 31 {6rh, 9r} #4 N/A 44d MDζ #5
9 31 {6r, 9r} N/A N/A 44e MDζ #9

MDζ

1 31,2 {(10s, 12s), 9r} #5 N/A 43ae MDζ2 #4
2 31,2 {(6s, 6s), 9r} N/A N/A 43bd MDζ2 #3
3 31,2 {(6s, 12s), 9r} N/A N/A 43be MDζ2 #2
4 31,2 {(10s, 6s), 9r} #8 N/A 43cd MDζ2 #1
5 31 {6rh, 9r} #1 N/A 44a MDζ2 #8
6 31 {9r, 9r} N/A N/A 44b MDζ2 #7
7 31 {18rh, 9r} N/A N/A 44c MDζ2 #6

8 31 {3, 9r} #4 Table 10 T ζ2
[5/2,5] #4 44d MDζ2 #5

9 31 {6r, 9r} N/A N/A 44f MDζ2 #9

Table 11: The 36 vertex-transitive 3-orbit polyhedra with symmetry group [3, 5] and 20
vertices
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